Skip to main content

Population Pharmacokinetics in Pediatric Drug Development

  • Chapter
  • First Online:
Fundamentals of Pediatric Drug Dosing

Abstract

Pediatric product development initiatives in the United States have resulted in improved product labeling, increased identification of adverse events, and development of new pediatric formulations. However, a substantial number of pediatric trials have failed to establish either safety or efficacy, leading to an inability to label the product for use in children. An important consideration is drug dosing with resulting inadequate drug exposure, which was found to be a possible contributing factor to pediatric trial failures in nearly a quarter of failed pediatric drug development programs reviewed by the US Food and Drug Administration (FDA) between 2007 and 2014 [1]. A number of scientific tools are now being applied in pediatric drug development to improve pediatric dosing and increase the success rate of pediatric trials. Population pharmacokinetics (POPPK), broadly defined as the quantitative approach to describe pharmacokinetic (PK) data and identify and characterize sources of variability in drug disposition, is one such tool that has made a significant contribution to understanding PK and drug exposure linked to clinical outcomes in the pediatric patient population. POPPK is a robust tool that can handle sparse and unbalanced PK data, which is common in pediatric studies secondary to the logistical and ethical considerations of studying drugs and biologics in children. Additionally, the pediatric population is highly diverse with respect to body size, renal and metabolic maturation, and hormonal status, and the population approach can be used to understand how these factors impact variability in drug disposition and response. The objective of this chapter is to provide an overview of POPPK in pediatric drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Momper JD, Mulugeta Y, Burckart GJ (2015) Failed pediatric drug development trials. Clin Pharmacol Ther 98(3):245–251

    Article  CAS  PubMed  Google Scholar 

  2. Dunne J, Rodriguez WJ, Murphy MD et al (2011) Extrapolation of adult data and other data in pediatric drug-development programs. Pediatrics 128(5):e1242–e1249

    Article  PubMed  Google Scholar 

  3. Anderson BJ, Holford NH (2011) Tips and traps analyzing pediatric PK data. Paediatr Anaesth 21(3):222–237

    Article  PubMed  Google Scholar 

  4. Momper JD, Chang Y, Jackson M, Schuette P, Seo S, Younis I, Abernethy DR, Yao L, Capparelli EV, Burckart GJ (2015) Adverse event detection and labeling in pediatric drug development: antiretroviral drugs. Ther Inn Reg Sci 49(2):302–309

    Google Scholar 

  5. Benjamin DK Jr, Smith PB, Jadhav P et al (2008) Pediatric antihypertensive trial failures: analysis of end points and dose range. Hypertension 51(4):834–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meibohm B, Laer S, Panetta JC, Barrett JS (2005) Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J 7(2):E475–E487

    Article  PubMed  PubMed Central  Google Scholar 

  7. General clinical pharmacology considerations for pediatric studies for drugs and biological products guidance for industry. Available at: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm425885.pdf

  8. Momper JD, Mulugeta Y, Green DJ et al (2013) Adolescent dosing and labeling since the food and drug administration amendments act of 2007. JAMA Pediatr 167(10):926–932

    Article  PubMed  Google Scholar 

  9. Leeder JS, Gaedigk R, Marcucci KA et al (2005) Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther 314(2):626–635

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Jadhav PR, Lala M, Gobburu J (2012) Clarification on precision criteria to derive sample size when designing pediatric pharmacokinetic studies. J Clin Pharmacol 52:1601–1606

    Article  CAS  PubMed  Google Scholar 

  11. Retout S, Duffull S, Mentre F (2001) Development and implementation of the population fisher information matrix for the evaluation of population pharmacokinetic designs. Comput Methods Programs Biomed 65(2):141–151

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez W, Selen A, Avant D et al (2008) Improving pediatric dosing through pediatric initiatives: what we have learned. Pediatrics 121(3):530–539

    Article  PubMed  Google Scholar 

  13. Laughon MM, Benjamin DK Jr, Capparelli EV et al (2011) Innovative clinical trial design for pediatric therapeutics. Expert Rev Clin Pharmacol 4(5):643–652

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cohen-Wolkowiez M, Ouellet D, Smith PB et al (2012) Population pharmacokinetics of metronidazole evaluated using scavenged samples from preterm infants. Antimicrob Agents Chemother 56(4):1828–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen-Wolkowiez M, Benjamin DK Jr, Ross A et al (2012) Population pharmacokinetics of piperacillin using scavenged samples from preterm infants. Ther Drug Monit 34(3):312–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wade KC, Wu D, Kaufman DA et al (2008) Population pharmacokinetics of fluconazole in young infants. Antimicrob Agents Chemother 52(11):4043–4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ansari M, Uppugunduri CR, Deglon J et al (2012) A simplified method for busulfan monitoring using dried blood spot in combination with liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 26(12):1437–1446

    Article  CAS  PubMed  Google Scholar 

  18. Suyagh M, Collier PS, Millership JS et al (2011) Metronidazole population pharmacokinetics in preterm neonates using dried blood-spot sampling. Pediatrics 127(2):e367–e374

    Article  PubMed  Google Scholar 

  19. Patel P, Mulla H, Kairamkonda V et al (2012) Dried blood spots and sparse sampling: a practical approach to estimating pharmacokinetic parameters of caffeine in preterm infants. Br J Clin Pharmacol 75(3):805–813

    Google Scholar 

  20. Patel P, Mulla H, Tanna S, Pandya H (2010) Facilitating pharmacokinetic studies in children: a new use of dried blood spots. Arch Dis Child 95(6):484–487

    Article  PubMed  Google Scholar 

  21. Spooner N, Lad R, Barfield M (2009) Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: considerations for the validation of a quantitative bioanalytical method. Anal Chem 81(4):1557–1563

    Article  CAS  PubMed  Google Scholar 

  22. Rowland M, Emmons GT (2010) Use of dried blood spots in drug development: pharmacokinetic considerations. AAPS J 12(3):290–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonate PL (1999) The effect of collinearity on parameter estimates in nonlinear mixed effect models. Pharm Res 16(5):709–717

    Article  CAS  PubMed  Google Scholar 

  24. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    Article  CAS  Google Scholar 

  25. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  26. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  CAS  PubMed  Google Scholar 

  27. Holford NH (1996) A size standard for pharmacokinetics. Clin Pharmacokinet 30(5):329–332

    Article  CAS  PubMed  Google Scholar 

  28. Anderson BJ, Woollard GA, Holford NH (2000) A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol 50(2):125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Packard GC, Birchard GF (2008) Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J Exp Biol 211(Pt 22):3581–3587

    Article  PubMed  Google Scholar 

  30. Painter PR (2005) The fractal geometry of nutrient exchange surfaces does not provide an explanation for 3/4-power metabolic scaling. Theor Biol Med Model 2:30

    Article  PubMed  PubMed Central  Google Scholar 

  31. Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev Camb Philos Soc 80(4):611–662

    Article  PubMed  Google Scholar 

  32. White CR, Cassey P, Blackburn TM (2007) Allometric exponents do not support a universal metabolic allometry. Ecology 88(2):315–323

    Article  PubMed  Google Scholar 

  33. Mahmood I (2010) Theoretical versus empirical allometry: facts behind theories and application to pharmacokinetics. J Pharm Sci 99(7):2927–2933

    Article  CAS  PubMed  Google Scholar 

  34. Mahmood I, Staschen CM, Goteti K (2014) Prediction of drug clearance in children: an evaluation of the predictive performance of several models. AAPS J 16(6):1334–1343

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bartelink IH, Boelens JJ, Bredius RG et al (2012) Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet 51(5):331–345

    Article  CAS  PubMed  Google Scholar 

  36. Wang C, Sadhavisvam S, Krekels EH et al (2013) Developmental changes in morphine clearance across the entire paediatric age range are best described by a bodyweight-dependent exponent model. Clin Drug Investig 33(7):523–534

    Article  PubMed  Google Scholar 

  37. Wang C, Allegaert K, Peeters MY, Tibboel D, Danhof M, Knibbe CA (2014) The allometric exponent for scaling clearance varies with age: a study on seven propofol datasets ranging from preterm neonates to adults. Br J Clin Pharmacol 77(1):149–159

    Article  CAS  PubMed  Google Scholar 

  38. Anderson BJ, Holford NH (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332

    Article  CAS  PubMed  Google Scholar 

  39. Population pharmacokinetics of fluconazole in extremely low birth weight infants. Available at: http://pediatrictrials.org/wp-content/uploads/2015/04/Population-Pharmacokinetics-of-Fluconazole-in-Extremely-Low-Birth-Weight-Infants.pdf

  40. Tremoulet A, Le J, Poindexter B et al (2014) Characterization of the population pharmacokinetics of ampicillin in neonates using an opportunistic study design. Antimicrob Agents Chemother 58(6):3013–3020

    Article  PubMed  PubMed Central  Google Scholar 

  41. Laer S, Barrett JS, Meibohm B (2009) The in silico child: using simulation to guide pediatric drug development and manage pediatric pharmacotherapy. J Clin Pharmacol 49(8):889–904

    Article  CAS  PubMed  Google Scholar 

  42. Verner M-A, McDougall R, Johanson G (2012) Using population physiologically based pharmacokinetic modeling to determine optimal sampling times and to interpret biological exposure markers: the example of occupational exposure to styrene. Toxicol Lett 213(2):299–304

    Article  CAS  PubMed  Google Scholar 

  43. Abernethy DR, Burckart GJ (2010) Pediatric dose selection. Clin Pharmacol Ther 87:270–271

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremiah D. Momper PharmD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Momper, J.D., Bradley, J., Best, B.M. (2016). Population Pharmacokinetics in Pediatric Drug Development. In: Mahmood, I., Burckart, G. (eds) Fundamentals of Pediatric Drug Dosing. Adis, Cham. https://doi.org/10.1007/978-3-319-43754-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43754-5_6

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-43752-1

  • Online ISBN: 978-3-319-43754-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics