Skip to main content

Case Study for Trait-Related Gene Evolution: Oil Biosynthesis Genes

  • Chapter
  • First Online:
The Brassica napus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Brassica napus was formed through recent hybridization between Brassica oleracea and Brassica rapa and is an important source of edible oil. The genomic characterization of the families of genes involved in oil biosynthesis was undertaken in the B. napus genome assembly to assess the potential impact of selection breeding on gene content and function. We compared oil biosynthesis genes and found that the genes number has a huge difference in 14 different species. There are 2482 homologs in B. napus cv. ZS11 and only 120 homologs in Jatropha curcas. There is a 4.1 fold expansion over Arabidopsis thaliana and >20 fold expansion over J. curcas. However, the distributions of the gene number in the acyl metabolism pathway are highly similar in all the 14 species. The fatty acid elongation and wax biosynthesis pathway, the phospholipid signaling pathway, and the galactolipid, sulfolipid, and phospholipid synthesis pathway are the top pathways in terms of the gene number. A total of 19 positive selection genes were identified in B. napus. Among them, 5 genes are in the phospholipid signaling pathway and 5 genes in the triacylglycerol and fatty acid degradation pathway. These results will help better understand the mechanism and evolution of oil biosynthesis genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baud S, Lepiniec L (2009) Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem. (PPB)/Societe francaise de physiologie vegetale 47:448–455

    Article  CAS  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  Google Scholar 

  • Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J Cell Mol Biol 50:825–838

    Article  CAS  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J Cell Mol Biol 40:575–585

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Plant genetics. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  CAS  Google Scholar 

  • Goffman FD, Alonso AP, Schwender J, Shachar-Hill Y, Ohlrogge JB (2005) Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiol 138:2269–2279

    Article  CAS  Google Scholar 

  • Hasan M, Friedt W, Pons-Kuhnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 116:1035–1049

    Article  CAS  Google Scholar 

  • Hu ZY, Hua W, Zhang L, Deng LB, Wang XF, Liu GH, Hao WJ, Wang HZ (2013) Seed structure characteristics to form ultrahigh oil content in rapeseed. PLoS ONE 8:e62099

    Article  CAS  Google Scholar 

  • Hua W, Li RJ, Zhan GM, Liu J, Li J, Wang XF, Liu GH, Wang HZ (2012) Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J Cell Mol Biol 69:432–444

    Article  CAS  Google Scholar 

  • Mu J, Tan H, Zheng Q, Fu F, Liang Y, Zhang J, Yang X, Wang T, Chong K, Wang XJ, Zuo J (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054

    Article  CAS  Google Scholar 

  • Pouvreau B, Baud S, Vernoud V, Morin V, Py C, Gendrot G, Pichon JP, Rouster J, Paul W, Rogowsky PM (2011) Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol 156:674–686

    Article  CAS  Google Scholar 

  • Ruuska SA, Schwender J, Ohlrogge JB (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136:2700–2709

    Article  CAS  Google Scholar 

  • Sakhno LA (2010) Fatty acid composition variability of rapeseed oil: classical selection and biotechnology. Tsitol Genet 44:70–80

    CAS  PubMed  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J Cell Mol Biol 54:608–620

    Article  CAS  Google Scholar 

  • Schwender J, Ohlrogge JB, Shachar-Hill Y (2003) A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem 278:29442–29453

    Article  CAS  Google Scholar 

  • Schwender J, Shachar-Hill Y, Ohlrogge JB (2006) Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem 281:34040–34047

    Article  CAS  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    Article  CAS  Google Scholar 

  • Snyder CL, Yurchenko OP, Siloto RM, Chen X, Liu Q, Mietkiewska E, Weselake RJ (2009) Acyltransferase action in the modification of seed oil biosynthesis. New Biotechnol 26:11–16

    Article  CAS  Google Scholar 

  • Stahl U, Carlsson AS, Lenman M, Dahlqvist A, Huang B, Banas W, Banas A, Stymne S (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135:1324–1335

    Article  CAS  Google Scholar 

  • Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L, Liu W, Huang S, Chen W, Yu J, Mei D, Meng J, Zeng P, Shi J, Liu K, Wang X, Wang X, Long Y, Liang X, Hu Z, Huang G, Dong C, Zhang H, Li J, Zhang Y, Li L, Shi C, Wang J, Lee SM, Guan C, Xu X, Liu S, Liu X, Chalhoub B, Hua W, Wang H (2017) The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J Cell Mol Biology 92:452–468

    Article  CAS  Google Scholar 

  • Wang H, Guo J, Lambert KN, Lin Y (2007) Developmental control of Arabidopsis seed oil biosynthesis. Planta 226:773–783

    Article  CAS  Google Scholar 

  • Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PB, Harwood JL (2009) Increasing the flow of carbon into seed oil. Biotechnol Adv 27:866–878

    Article  CAS  Google Scholar 

  • Yurchenko OP, Weselake RJ (2011) Involvement of low molecular mass soluble acyl-CoA-binding protein in seed oil biosynthesis. New Biotechnol 28:97–109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National 863 Plan projects (2013AA102602 and 2012AA101107), National Key Basic Research Program of China (2015CB150200), the Industry Technology System of Rapeseed in China (CARS-12), and the Hubei Agricultural Science and Technology Innovation Center of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Z., Hua, W. (2018). Case Study for Trait-Related Gene Evolution: Oil Biosynthesis Genes. In: Liu, S., Snowdon, R., Chalhoub, B. (eds) The Brassica napus Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-43694-4_11

Download citation

Publish with us

Policies and ethics