Skip to main content

Role of Mushroom Mn-Oxidizing Peroxidases in Biomass Conversion

  • Chapter
  • First Online:
Microbial Enzymes in Bioconversions of Biomass

Abstract

Intensive agricultural and industrial production followed by increased production of lignocellulosic wastes, disruption of environment, and depletion of natural resources are features of the modern society. However, these wastes present sustainable resources of fibers and energy and can be useful raw materials for many industries. Therefore, development of the optimal ways for their environmental and economical friendly biological pretreatment where the main participants will be fungi, owing to their ability to produce lignocellulolytic enzymes, preoccupies scientists. Mn-oxidizing peroxidases play crucial role in the process and based on the substrate specificity, this group is divided into Mn-dependent- and versatile peroxidases. However, delignification capacity depends on fungal species and strain, namely on their potential of lignocellulolytic enzyme production and degradation selectivity, type and composition of lignocellulosic wastes, and fermentation conditions. Species which predominantly degrade lignin and significantly weaker cellulose could have important role in processes of food, feed, paper, and biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamović M, Grubić G, Milenković I, Jovanović R, Protić R, Lj Sretenović, Lj Stoićević (1998) The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding. Anim Feed Sci Tech 71:357–362

    Article  Google Scholar 

  • Alcalde M (2015) Engineering the ligninolytic enzyme. Trends Biotechnol 33:55–162

    Article  Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlack the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173

    Article  Google Scholar 

  • Arora DS, Sharma RK (2009) Enhancement in in vitro digestibility of wheat straw obtained from different geographical regions during solid state fermentation by white rot fungi. Bioresources 4:909–920

    Google Scholar 

  • Asgher M, Ahmed Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse of expose cellulose polymers for saccharification and bio-ethanol production. Ind Crop Prod 44:488–495

    Article  Google Scholar 

  • Asiegbu FO, Paterson A, Smith JE (1996) The effects of co-fungal cultures and supplementation with carbohydrate adjuncts on lignin biodegradation and substrate digestibility. World J Microb Biot 12:273–279

    Article  Google Scholar 

  • Asim N, Emdadi Z, Mohammad M, Yarmo MA, Sopian K (2015) Agricultural solid wastes for green desiccant applications: an overview of research achievements, opportunities and perspectives. J Clean Prod 91:26–35

    Article  Google Scholar 

  • Bajpai P, Bajpai PK, Akhtar M, Jauhari MB (2001) Biokraft pulping of eucalyptus with selected lignin-degrading fungi. J Pulp Pap Sci 27:235–242

    Google Scholar 

  • Blumenthal K (2011) Generation and treatment of municipal waste. Stat Focus 31:1–12

    Google Scholar 

  • Calzada JF, Franco LF, de Arriola MC, Rolz C, Ortiz MA (1987) Acceptability, body weight changes and digestibility of spent wheat straw after harvesting of Pleurotus sajor-caju. Biol Waste 22:303–309

    Article  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J Biol Chem 274:10324–10330

    Article  Google Scholar 

  • Chalamcherla VL, Singaracharya MA, Lakshmi MV (2010) Amino acids profile of the lignocellulosic feed treated with cellulase-free lignolytic mutants of Pleurotus ostreatus. Bioresources 5:259–267

    Google Scholar 

  • Chang ST, Miles PG (2004) Mushrooms. Cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press LLC, London

    Book  Google Scholar 

  • Cheung PCK (2013) Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Sci Hum Well 2:162–166

    Article  Google Scholar 

  • Chi YJ, Hatakka A, Maijala P (2007) Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? Int Biodeter Biodegr 59:32–39

    Article  Google Scholar 

  • Choudhury S, Sahoo N, Manthan M, Rohela RS (1998) Fungal treatment of pulp and paper mill effluents for pollution control. J Ind Pollut Control 14:1–13

    Google Scholar 

  • Datta A, Bettermann A, Kirk TK (1991) Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl Environ Microbiol 57:1453–1460

    Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodisel fuels. Energ Convers Manag 50:14–34

    Article  Google Scholar 

  • Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresource Technol 101:6045–6050

    Article  Google Scholar 

  • Dorado J, van Beek TA, Claassen FW, Sierra-Alvarez R (2001) Degradation of lipophilic wood extractive constituents in Pinus sylvestris by the white rot fungi Bjerkandera sp. and Trametes versicolor. Wood Sci Technol 35:117–125

    Article  Google Scholar 

  • Enshasy HAE, Hatti-Kaul R (2013) Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 31:668–677

    Article  Google Scholar 

  • Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin

    Book  Google Scholar 

  • Evans CS, Gallagher IM, Atkey PT, Wood DA (1991) Localisation of degradative enzymes in white-rot decay of lignocellulose. Biodegradation 2:93–106

    Article  Google Scholar 

  • Fazaeli H, Azizi A, Amile M (2006) Nutritive value index of treated wheat straw with Pleurotus fungi fed to sheep. Pakistan J Biol Sci 9:2444–2449

    Article  Google Scholar 

  • Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P et al (2012) Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Nat Acad Sci USA 109:5458–5463

    Article  Google Scholar 

  • Fernández-Fueyo E, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Hammel KE, Medrano FJ, Martínez AT (2014) Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnol Biofuels 7:2

    Article  Google Scholar 

  • Ginterová A, Lazarová A (1987) Degradation dynamics of lignocellulose materials by wood-rotting Pleurotus fungi. Folia Microbiol 32:434–437

    Article  Google Scholar 

  • González Alriols M, Tejado A, Blanco M, Mondragon I, Labidi J (2009) Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process. Chem Eng J 148:106–114

    Article  Google Scholar 

  • González LF, Sarria V, Sánchez OF (2010) Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV. BioresourceTechnol 101:3493–3499

    Article  Google Scholar 

  • Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    Article  Google Scholar 

  • Guerriero G, Hausman JF, Strauss J, Ertan H (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193

    Article  Google Scholar 

  • Guillén F, Gómez-Toribio V, Martinez MJ, Martinez AT (2000) Production of hydroxyl radical by the synergistic action of fungal laccase and aryl-alcohol oxidase. Arch Biochem Biophys 383:142–147

    Article  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567

    Article  Google Scholar 

  • Gutiérrez A, Caramelo L, Prieto A, Martinez MJ, Martinez AT (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi from the genus Pleurotus. Appl Environ Microbiol 60:1783–1788

    Google Scholar 

  • Gutiérrez A, del Rio JC, Rencoret J, Ibarra D, Martinez AT (2006) Main lipophilic extractives in different paper pulp types can be removed using the laccase-mediator system. Appl Microbiol Biotechnol 72:845–851

    Article  Google Scholar 

  • Gutiérrez A, del Rio JC, Martinez AT (2009) Microbial and enzymatic control of pitch in the pulp and paper industry. Appl Microbiol Biotechnol 82:1005–1018

    Article  Google Scholar 

  • Hammel EK (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 33–45

    Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol 100:10–18

    Article  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Tech 30:454–466

    Article  Google Scholar 

  • Iqbal HMN, Ahmed I, Zia MA, Irfan M (2011) Purification and characterization of the kinetic parameters of cellulose produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2:149–156

    Article  Google Scholar 

  • Jerusik RJ (2010) Fungi and paper manufacture. Fungal Biol Rev 24:68–72

    Article  Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–308

    Google Scholar 

  • Knežević A, Milovanović I, Stajić M, Lončar N, Brčeski I, Vukojević J, Ćilerdžić J (2013a) Lignin degradation by selected fungal species. Bioresource Technol 138:117–123

    Article  Google Scholar 

  • Knežević A, Milovanović I, Stajić M, Vukojević J (2013b) Potential of Trametes species to degrade lignin. Int Biodeter Biodegr 85:52–56

    Article  Google Scholar 

  • Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW (2015) Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol Adv 33:191–202

    Article  Google Scholar 

  • Lanfermann I, Linke D, Nimtz M, Berger RG (2015) Manganese peroxidases from Ganoderma applanatum degrade β-carotene under alkaline conditions. Appl Biochem Biotechnol 175:3800–3812

    Article  Google Scholar 

  • Lapierre C (1993) Application of new methods for the investigation of lignin structure. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. American Society of Agronomy, Madison, pp 133–166

    Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Gen Biol 27:175–185

    Article  Google Scholar 

  • Martinez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Tech 30:425–432

    Article  Google Scholar 

  • Martinez MJ, Ruiz-Dueñas FJ, Guillén F, Martinez AT (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432

    Article  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  Google Scholar 

  • Martinez-Inigo MJ, Gutiérrez A, del Rio JC, Martinez MJ, Martinez AT (2000) Time course of fungal removal of lipophilic extractives from Eucalyptus globulus wood. J Biotechnol 84:119–126

    Article  Google Scholar 

  • Medeiros BM, Bento VA, Nunes LLA, Oliveira CS (1999) Optimization of some variables that affect the synthesis of laccase by Pleurotus ostreatus. Bioprocess Eng 21:483–487

    Google Scholar 

  • Muñoz C, Guillen F, Martínez TA, Martínez JM (1997a) Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Cur Microbiol 34:1–5

    Article  Google Scholar 

  • Muñoz C, Guillen F, Martínez TA, Martínez JM (1997b) Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microbiol 63:2166–2174

    Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37:52–68

    Article  Google Scholar 

  • Ogawa K, Yamazaki T, Kajiwara S, Watanabe A, Asada Y, Shishido K (1998) Molecular breeding of the basidiomycete Coprinus cinereus strains with high lignin-decolorization and -degradation activities using novel heterologous protein expression vectors. Appl Microbiol Biotechnol 49:285–289

    Article  Google Scholar 

  • Pérez-Boada M, Doyle WA, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT, Smith AT (2002) Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimisation of in vitro folding. Enzyme Microb Tech 30:518–524

    Article  Google Scholar 

  • Perez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martinez MJ, Piontek K, Martinez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402

    Article  Google Scholar 

  • Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater—a review. Sci Total Environ 333:37–58

    Article  Google Scholar 

  • Prasad GK, Gupta RK (1997) Decolourization of pulp and paper mill effluent by two white-rot fungi. Indian J Environ Health 39:89–96

    Google Scholar 

  • Rai SN, Walli TK, Gupta BN (1989) The chemical composition and nutritive value of rice straw after treatment with urea or Coprinus fimetarius in a solid state fermentation system. Anim Feed Sci Tech 26:81–92

    Article  Google Scholar 

  • Reis FS, Barros L, Martins A, Ferreira ICFR (2012) Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food Chem Toxicol 50:191–197

    Article  Google Scholar 

  • Rodrigues MAM, Pinto P, Bezerra RMF, Dias AA, Guedes CVM, Cardoso VMG et al (2008) Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim Feed Sci Technol 141:326–338

    Article  Google Scholar 

  • Ruiz-Dueñas FJ, Guillen F, Camarero S, Perez-Boada M, Martinez MJ, Martinez AT (1999) Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol 65:4458–4463

    Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, Garcia EMY, Martinez MJ, Martinez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycetes peroxidases. J Exp Bot 60:441–452

    Article  Google Scholar 

  • Salame TM, Knop D, Levinson D, Mabjeesh SJ, YardenO Hadar Y (2012) Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation. PLoS ONE 7:e52446

    Article  Google Scholar 

  • Salvachua D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martinez AT, Martinez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technol 102:7500–7506

    Article  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  Google Scholar 

  • Saxena N, Gupta RK (1998) Decolourization and delignification of pulp and paper mill effluent by white rot fungi. Indian J Exp Biol 36:1049–1051

    Google Scholar 

  • Shrivastava B, Nandal P, Sharma A, Jain KK, Khasa YP, Das TK, Mani V, Kewalramani NJ, Kundu SS, Kuhad RC (2012) Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Bioresource Technol 107:347–351

    Article  Google Scholar 

  • Simonić J, Vukojević J, Stajić M, Glamočlija J (2010) Intraspecific diversity within Ganoderma lucidum in laccase and Mn-dependent peroxidases production during plant residues fermentation. Appl Biochem Biotechnol 162:408–415

    Article  Google Scholar 

  • Singh AP, Singh T (2014) Biotechnological applications of wood-rotting fungi: a review. Biomass Bioenerg 62:198–206

    Article  Google Scholar 

  • Skyba O, Douglas CJ, Mansfield SD (2013) Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl Environ Microbiol 79:2560–2571

    Article  Google Scholar 

  • Stajić M, Persky L, Friesem D, Hadar Y, Wasser SP, Nevo E, Vukojević J (2006a) Effect of different carbon and nitrogen sources on laccase and peroxidases activity by selected Pleurotus species. Enzyme Microb Tech 38:65–73

    Article  Google Scholar 

  • Stajić M, Persky L, Hadar Y, Friesem D, Duletić-Laušević S, Wasser SP, Nevo E (2006b) Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes. Appl Biochem Biotechnol 128:87–96

    Article  Google Scholar 

  • Stajić M, Vukojević J, Duletić-Laušević S (2009) Biology of Pleurotus eryngii and the role in biotechnological processes: a review. Crit Rev Biotechnol 29:55–66

    Article  Google Scholar 

  • Stajić M, Kukavica B, Vukojević J, Simonić J, Veljović-Jovanović S, Duletić-Laušević S (2010) Wheat straw conversion by enzymatic system of Ganoderma lucidum. Bioresources 5:2362–2373

    Google Scholar 

  • Stajić M, Vukojević J, Knežević A, Milovanović I (2013) Influence of trace elements on ligninolytic enzyme activity of Pleurotus ostreatus and P. pulmonarius. Bioresources 8:3027–3037

    Google Scholar 

  • Stuardo M, Vasquez M, Vicuna R, Gonzalez B (2004) Molecular approach for analysis of model fungal genes encoding ligninolytic peroxidases in wood-decaying soil system. Lett Appl Microbiol 38:43–49

    Article  Google Scholar 

  • Tabka MG, Herpoel-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulose xylanase and feruloyl esterase treatment. Enzyme Microb Tech 39:897–902

    Article  Google Scholar 

  • Thurston C (1994) The structure and function of fungal laccase. Microbiol 140:19–26

    Article  Google Scholar 

  • Tuyen VD, Cone JW, Baars JJP, Sonnenberg ASM, Hendriks WH (2012) Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation. Bioresource Technol 111:336–342

    Article  Google Scholar 

  • Urzúa U, Larrondo LF, Lobos S, Larrain J, Vicuña R (1995) Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora. FEBS Lett 371:132–136

    Article  Google Scholar 

  • Van Beek TA, Kuster B, Chassen FW, Tienvieri T, Bertaud F, Lenon G, Petit-Conil M, Sierra-Alvarez R (2007) Fungal biotreatment of spruce wood with Trametes versicolor for pitch control: influence of extractive contents, pulping process parameters, paper quality and effluent toxicity. Bioresource Technol 98:302–311

    Article  Google Scholar 

  • Varela E, Guillén F, Martínez AT, Martínez MJ (2001) Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme. Biochim Biophys Acta 1546:107–113

    Article  Google Scholar 

  • Wan C, Li Y (2010) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technol 101:6398–6403

    Article  Google Scholar 

  • Wariishi H, Akilswaran L, Gold MH (1988) Manganese peroxidase from the basidiomycetes Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27:5365–5370

    Article  Google Scholar 

  • Yang Q, Zhan H, Wang S, Fu S, Li K (2008) Modification of Eucalyptus CTMP fibers with white rot fungus Trametes hirsute—effects on fiber morphology and paper physical strengths. Bioresource Technol 99:8118–8124

    Article  Google Scholar 

  • Yang B, Wyman C (2008) Pre-treatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40

    Article  Google Scholar 

  • Zechendorf B (1999) Sustainable development: How can biotechnology contribute? Feature 17:219–225

    Google Scholar 

  • Zhang S, Jiang M, Zhou Z, Zhao M, Li Y (2012) Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium. Int Biodeter Biodegr 75:89–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Stajić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stajić, M., Vukojević, J., Milovanović, I., Ćilerdžić, J., Knežević, A. (2016). Role of Mushroom Mn-Oxidizing Peroxidases in Biomass Conversion. In: Gupta, V. (eds) Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-43679-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43679-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43677-7

  • Online ISBN: 978-3-319-43679-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics