Skip to main content

Property-Driven State-Space Coarsening for Continuous Time Markov Chains

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9826))

Included in the following conference series:

Abstract

Dynamical systems with large state-spaces are often expensive to thoroughly explore experimentally. Coarse-graining methods aim to define simpler systems which are more amenable to analysis and exploration; most current methods, however, focus on a priori state aggregation based on similarities in transition rates, which is not necessarily reflected in similar behaviours at the level of trajectories. We propose a way to coarsen the state-space of a system which optimally preserves the satisfaction of a set of logical specifications about the system’s trajectories. Our approach is based on Gaussian Process emulation and Multi-Dimensional Scaling, a dimensionality reduction technique which optimally preserves distances in non-Euclidean spaces. We show how to obtain low-dimensional visualisations of the system’s state-space from the perspective of properties’ satisfaction, and how to define macro-states which behave coherently with respect to the specifications. Our approach is illustrated on a non-trivial running example, showing promising performance and high computational efficiency.

M. Michaelides, D. Milios and G. Sanguinetti are supported by the European Research Council under grant MLCS 306999. J. Hillston is supported by the EU project, QUANTICOL 600708.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, A., Brim, L., Češka, M., Kwiatkowska, M.Z.: Adaptive aggregation of Markov chains: quantitative analysis of chemical reaction networks. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 195–213. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  2. Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. In: Proceedings of NIPS, pp. 177–184 (2004)

    Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc., Secaucus (2006)

    MATH  Google Scholar 

  4. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)

    MATH  Google Scholar 

  5. Bortolussi, L., Milios, D., Sanguinetti, G.: Efficient stochastic simulation of systems with multiple time scales via statistical abstraction. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 40–51. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buchholz, P., Kriege, J.: Approximate aggregation of Markovian models using alternating least squares. Perform. Eval. 73, 73–90 (2014)

    Article  Google Scholar 

  8. Cao, Y., Petzold, L.: Accuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systems. J. Comput. Phys. 212(1), 6–24 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33), 3065–3084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Deng, K., Mehta, P.G., Meyn, S.P.: Optimal Kullback-Leibler aggregation via spectral theory of Markov chains. IEEE Trans. Autom. Control 56(12), 2793–2808 (2011)

    Article  MathSciNet  Google Scholar 

  12. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  14. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Milios, D., Gilmore, S.: Component aggregation for pepa models: an approach based on approximate strong equivalence. Perform. Eval. 94, 43–71 (2015)

    Article  Google Scholar 

  18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  19. Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations in Markovian process algebra. J. Log. Algebr. Meth. Program. 84(2), 238–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michalis Michaelides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Michaelides, M., Milios, D., Hillston, J., Sanguinetti, G. (2016). Property-Driven State-Space Coarsening for Continuous Time Markov Chains. In: Agha, G., Van Houdt, B. (eds) Quantitative Evaluation of Systems. QEST 2016. Lecture Notes in Computer Science(), vol 9826. Springer, Cham. https://doi.org/10.1007/978-3-319-43425-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43425-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43424-7

  • Online ISBN: 978-3-319-43425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics