Skip to main content

Well-Designed Experiments Make Proteomic Studies on Stressed Plants Meaningful

  • Chapter
  • First Online:
Agricultural Proteomics Volume 2

Abstract

Analysis of the impact of abiotic stresses on plants is technically demanding. The cultivation of plants, application of treatments, choice of tissues and preparation of biological samples for proteomic analysis is as important as the subsequent identification of proteins. With appropriate precautions, proteomics will greatly improve our understanding of the mechanisms of abiotic stress tolerance. Hence, this chapter summarises some of the major design faults that can compromise the interpretation of ‘stress experiments’. The examples of salt, drought , thermal stress and waterlogging are taken as representative of commonly encountered stresses, with recommendations for ways to avoid artefacts in design. The importance of interactions between these stresses is then discussed, pointing out the relevance of carefully constructed time courses and attendant physiological measurements to define the degree of stress. Tissue selection is also emphasised, recognising that stresses have differential impacts on different organs. Finally, the significance of choice of plant species is discussed, with recognition of the value of model species and the importance of expanding the range of taxa used if the full range of stress acclimation responses is to be identified through proteomics .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fritsche-Neto R, Borém A (2015) Phenomics: how next-generation phenotyping is revolutionizing plant breeding. Springer, Berlin

    Book  Google Scholar 

  2. Vanderschuren H, Lentz E, Zainuddin I, Gruissem W (2013) Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J Proteom 93:5–19

    Article  CAS  Google Scholar 

  3. Sorenson R, Bailey-Serres J (2014) Selective mRNA translation tailors low oxygen energetics. In: Low-oxygen stress in plants. Springer, Berlin, pp 95–115

    Google Scholar 

  4. Guidetti-Gonzalez S, Labate MTV, De Santana Borges J, Budzinski IGF, Marques FG, Regiani T et al (2015) Proteomics and metabolomics as large-scale phenotyping tools. In: Phenomics. Springer, Berlin, pp 125–139

    Google Scholar 

  5. Low TY, Heck AJ (2016) Reconciling proteomics with next generation sequencing. Curr Opin Chem Biol 30:14–20

    Article  CAS  PubMed  Google Scholar 

  6. Hamblin A, Tennant D (1987) Root length density and water-uptake in cereals and grain legumes—how well are they correlated. Aust J Agric Res 38:513–527

    Article  Google Scholar 

  7. Poorter H, Buhler J, Van Dusschoten D, Climent J, Postma JA (2012) Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct Plant Biol 39:839–850

    Article  Google Scholar 

  8. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  9. Naidu R, Rengasamy P (1993) Ion interactions and constraints to plant nutrition in australian sodic soils. Aust J Soil Res 31:801–819

    Article  CAS  Google Scholar 

  10. Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells a primary response to salt stress? Plant Physiol 79:207–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su Y, Luo W, Lin W, Ma L, Kabir MH (2015) Model of cation transportation mediated by high-affinity potassium transporters (HKTs) in higher plants. Biol Proc Online 17:1

    Article  Google Scholar 

  12. Rozema J, Schat H (2013) Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot 92:83–95

    Article  CAS  Google Scholar 

  13. Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  14. Ludlow MM, Muchow RC (1990) A critical-evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  15. Mirzaei M, Pascovici D, Atwell BJ, Haynes PA (2012) Differential regulation of aquaporins, small GTPases and V-ATPases proteins in rice leaves subjected to drought stress and recovery. Proteomics 12:864–877

    Article  CAS  PubMed  Google Scholar 

  16. Ashoub A, Baeumlisberger M, Neupaertl M, Karas M, Bruggemann W (2015) Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Mol Biol 87:459–471

    Article  CAS  PubMed  Google Scholar 

  17. Atwell BJ, Henery ML, Rogers GS, Seneweera SP, Treadwell M, Conroy JP (2007) Canopy development and hydraulic function in Eucalyptus tereticornis grown in drought in CO2-enriched atmospheres. Funct Plant Biol 34:1137–1149

    Article  Google Scholar 

  18. Kelly JW, Duursma RA, Atwell BJ, Tissue DT, Medlyn BE (2015) Drought × CO2 interactions in trees: a test of the low‐intercellular CO2 concentration (Ci) mechanism. New Phytol 209:1660–1612

    Google Scholar 

  19. Mirzaei M, Soltani N, Sarhadi E, Pascovici D, Keighley T, Salekdeh GH et al (2012) Shotgun proteomic analysis of long-distance drought signaling in rice roots. J Proteome Res 11:348–358

    Article  CAS  PubMed  Google Scholar 

  20. Maksup S, Roytrakul S, Supaibulwatana K (2014) Physiological and comparative proteomic analyses of Thai jasmine rice and two check cultivars in response to drought stress. J Plant Interact 9:43–55

    Article  CAS  Google Scholar 

  21. Dracup M, Gibbs J, Greenway H (1986) Melibiose, a suitable, non-permeating osmoticum for suspension-cultured tobacco cells. J Exp Bot 37:1079–1089

    Article  CAS  Google Scholar 

  22. Hemantaranjan A, Patel PK, Singh R, Srivastava AK (2012) Heat stress responses of wheat and other plants. Adv Plant Physiol 13:279–313

    CAS  Google Scholar 

  23. Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459

    Article  Google Scholar 

  24. Neilson KA, Scafaro AP, Chick JM, George IS, Van Sluyter SC, Gygi SP et al (2013) The influence of signals from chilled roots on the proteome of shoot tissues in rice seedlings. Proteomics 13:1922–1933

    Article  CAS  PubMed  Google Scholar 

  25. Webb T, Armstrong W (1983) The effects of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots. J Exp Bot 34:579–603

    Article  CAS  Google Scholar 

  26. Xia JH, Roberts J (1996) Regulation of H + extrusion and cytoplasmic ph in maize root tips acclimated to a low-oxygen environment. Plant Physiol 111:227–233

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bouny JM, Saglio PH (1996) Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pretreatment. Plant Physiol 111:187–194

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gibbs J, Greenway H (2003) Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:353

    Article  Google Scholar 

  29. Smith AM, Ap Rees T (1979) Pathways of carbohydrate fermentation in the roots of marsh plants. Planta 146:327–334

    Article  CAS  PubMed  Google Scholar 

  30. Colmer T (2002) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot 91:301–309

    Article  Google Scholar 

  31. Thomson CJ, Greenway H (1991) Metabolic evidence for stelar anoxia in maize roots exposed to low O2 concentrations. Plant Physiol 96:1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62:39–57

    Article  CAS  PubMed  Google Scholar 

  33. Colmer TD, Huang S, Greenway H (2001) Evidence for down-regulation of ethanolic fermentation and K+ effluxes in the coleoptile of rice seedlings during prolonged anoxia. J Exp Bot 52:1507–1517

    Article  CAS  PubMed  Google Scholar 

  34. Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K et al (2010) Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol 152:1484–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Narsai R, Rocha M, Geigenberger P, Whelan J, Van Dongen JT (2011) Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol 190:472–487

    Article  CAS  PubMed  Google Scholar 

  36. Atwell BJ, Aprees T (1986) Distribution of protein synthesized by seedlings of Oryza sativa grown in anoxia. J Plant Physiol 123:401–408

    Article  CAS  Google Scholar 

  37. Edwards JM, Roberts TH, Atwell BJ (2012) Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis. J Exp Bot 63:4389–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nelson CJ, Li L, Millar AH (2014) Quantitative analysis of protein turnover in plants. Proteomics 14:579–592

    Article  CAS  PubMed  Google Scholar 

  39. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  Google Scholar 

  40. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  42. Sojka R, Stolzy L, Kaufmann M (1975) Wheat growth related to rhizosphere temperature and oxygen levels. Agron J 67:591–596

    Article  Google Scholar 

  43. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  44. Matsui T, Kobayasi K, Yoshimoto M, Hasegawa T (2007) Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales, Australia. Plant Prod Sci 10:57–63

    Article  Google Scholar 

  45. Crawford AJ, Mclachlan DH, Hetherington AM, Franklin KA (2012) High temperature exposure increases plant cooling capacity. Curr Biol 22:R396–R397

    Article  CAS  PubMed  Google Scholar 

  46. Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO et al (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095

    Article  CAS  PubMed  Google Scholar 

  47. Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  48. Trought M, Drew M (1982) Effects of waterlogging on young wheat plants (Triticum aestivum L.) and on soil solutes at different soil temperatures. Plant Soil 69:311–326

    Article  CAS  Google Scholar 

  49. Gammulla CG, Pascovici D, Atwell BJ, Haynes PA (2010) Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress. Proteomics 10:3001–3019

    Article  CAS  PubMed  Google Scholar 

  50. Gammulla CG, Pascovici D, Atwell BJ, Haynes PA (2011) Differential proteomic response of rice (Oryza sativa) leaves exposed to high- and low-temperature stress. Proteomics 11:2839–2850

    Article  CAS  PubMed  Google Scholar 

  51. Sachs MM, Freeling M, Okimoto R (1980) The anaerobic proteins of maize. Cell 20:761–767

    Article  CAS  PubMed  Google Scholar 

  52. Narsai R, Edwards JM, Roberts TH, Whelan J, Joss GH, Atwell BJ (2015) Mechanisms of growth and patterns of gene expression in oxygen-deprived rice coleoptiles. Plant J 82:25–40

    Article  CAS  PubMed  Google Scholar 

  53. Waters I, Kuiper PJC, Watkin E, Greenway H (1991) Effects of anoxia on wheat seedlings. J Exp Bot 42:1427–1435

    Article  CAS  Google Scholar 

  54. Roberts J, Callis J, Jardetzky O, Walbot V, Freeling M (1984) Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc Natl Acad Sci USA 81:6029–6033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shabala S, Bose J, Fuglsang AT, Pottosin I (2016) On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. J Exp Bot 67:1015–1031

    Article  CAS  PubMed  Google Scholar 

  56. Kulichikhin KY, Greenway H, Byrne L, Colmer TD (2009) Regulation of intracellular pH during anoxia in rice coleoptiles in acidic and near neutral conditions. J Exp Bot 60:2119–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamasaki K, Kigawa T, Seki M, Shinozaki K, Yokoyama S (2013) DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci 18:267–276

    Article  CAS  PubMed  Google Scholar 

  58. Cai YM, Yu J, Gallois P (2014) Endoplasmic reticulum stress-induced PCD and caspase-like activities involved. Front Plant Sci 5:41

    Article  PubMed  PubMed Central  Google Scholar 

  59. Narsai R, Howell KA, Carroll A, Ivanova A, Millar AH, Whelan J (2009) Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. Plant Physiol 151:306–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G et al (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  63. Mathesius U, Djordjevic MA, Oakes M, Goffard N, Haerizadeh F, Weiller GF et al (2011) Comparative proteomic profiles of the soybean (Glycine max) root apex and differentiated root zone. Proteomics 11:1707–1719

    Article  CAS  PubMed  Google Scholar 

  64. Sharp RE, Silk WK, Hsiao TC (1988) Growth of the maize primary root at low water potentials I. Spatial distribution of expansive growth. Plant Physiol 87:50–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R et al (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  CAS  PubMed  Google Scholar 

  66. Takahashi H, Yamauchi T, Rajhi I, Nishizawa NK, Nakazono M (2015) Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Ann Bot 115:879–894

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Aaron Phillips and Tom Roberts for careful editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Atwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atwell, B.J. (2016). Well-Designed Experiments Make Proteomic Studies on Stressed Plants Meaningful. In: Salekdeh, G. (eds) Agricultural Proteomics Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-43278-6_1

Download citation

Publish with us

Policies and ethics