Skip to main content

Epiphyte Vegetation

  • Chapter
  • First Online:

Abstract

One important life form was largely overlooked in the previous chapters on forest vegetation, namely the algae, lichens and bryophytes that colonise living trees and dead wood as epiphytes. These generally inconspicuous mosaics of cryptogams have often been ignored in classical forest vegetation studies, but have been gaining attention as early and sensitive indicators of air pollution or naturalness of forests since about the 1960s. Moreover, cryptogams often represent a large proportion of the flora of forests, in many cases outnumbering vascular plants in terms of species numbers. For example, it is estimated that central European beech forests are colonised by about 215 vascular plant species classified as ‘true’ forest species (Schmidt et al. 2003, 2011), equivalent to c. 7.2 % of the vascular flora. However, c. 190 bryophyte and c. 280 lichen species inhabit beech forests, i.e. c. 17 % of the respective flora. Thus, about two thirds of the beech forest flora (estimated at c. 685 plant species) are lichens and bryophytes. Epiphytes also can play an important role in nutrient cycling within forest ecosystems by influencing the amount and chemical composition of stemflow water, increasing fog interception in mountain forests and contributing to the fixation of CO2 and N2 by the forest vegetation.

This is a preview of subscription content, log in via an institution.

Change history

  • 13 April 2018

    Unfortunately, in the original version of these chapters the below listed corrections & figures were not updated. The corrected versions are given on the following pages:

References

  • Arzani, G., 1974. Ökophysiologische Untersuchungen über die SO2-, HCl- und HF-Empfindlichkeit verschiedener Flechtenarten. PhD thesis Univ. Gießen. 136 p.

    Google Scholar 

  • Aude, E., Poulsen, R.S., 2000. Influence of management on the species composition of epiphytic cryptogams in Danish Fagus forests. Appl. Veg. Sci. 3: 81–88.

    Google Scholar 

  • Barkman, J.J., 1958. Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum u. Comp., Assen (NL). 628 p.

    Google Scholar 

  • Barkman, J.J., 1962. Bibliographica phytosociologica cryptogamica. Pars I. Epiphyta. Excerpta Botan., Sect. B 4: 59–86.

    Google Scholar 

  • Barkman, J.J., 1968. Das systematische Problem der Mikrogesellschaften innerhalb der Biozönosen. In: Tüxen, R. (ed.): Pflanzensoziologische Systematik. Ber. Int. Symp. Stolzenau/Weser 1964. W. Junk, Den Haag: 21–48.

    Google Scholar 

  • Bates, J.W., 1992. Influence of chemical and physical factors on Quercus and Fraxinus epiphytes at Loch Sunart, western Scotland: a multivariate analysis. J. Ecol. 80: 163–179.

    Google Scholar 

  • Bates, J.W., McNee, P.J., McLeod, A.R., 1996. Effects of sulphur dioxide and ozone on lichen colonization of conifers in the Liphook Forest Fumigation Project. New Phytol. 132: 653–660.

    Google Scholar 

  • Bates, J.W., Bell, J.N.B., Massara, A.C., 2001. Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S.E. England over 21 years with declining SO2 concentrations. Atmosph. Environ. 35: 2557–2568.

    Google Scholar 

  • Bibinger, H., 1970. Soziologische Gliederung der bartflechtenreichen Epiphytenvereine des Südschwarzwaldes. Herzogia 2: 1–24.

    Google Scholar 

  • Bielczyk, U., 1986. Epiphytic lichen-dominated communities in the Western Beskidy Mountains, Western Carpathians. Fragm. Florist. Geobot. 30: 3–89.

    Google Scholar 

  • Bilger, W., Rimke, S., Schreiber, U., Lange, O.L., 1989. Inhibition of energy-transfer to photosystem II in lichens by dehydration: different properties of reversibility with green and blue-green phycobionts. J. Plant Physiol. 134: 261–268.

    Google Scholar 

  • Boucher, V.L., Stone, D.F., 1992. Epiphytic lichen biomass. In: Carroll, G.C., Wicklow, D.T. (eds.): The Fungal Community. Its Organization and Role in the Ecosystem. 2nd ed. Marcel Dekker, New York. pp. 583–599.

    Google Scholar 

  • Büdel, B., Lange, O.L., 1991. Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Botanica Acta 104: 361–366.

    Google Scholar 

  • de Bakker, A.J., 1989. Effects of ammonia emission on epiphytic lichen vegetation. Acta Bot. Neerl. 38: 337–342.

    Google Scholar 

  • Drehwald, U., 1993. Die Pflanzengesellschaften Niedersachsens. Bestandsentwicklung, Gefährdung und Schutzprobleme. Flechtengesellschaften. Schr.-R. Natursch. Niedersachsen 20, 10: 122 p.

    Google Scholar 

  • Drehwald, U., Preising, E., 1991. Die Pflanzengesellschaften Niedersachsens. Bestandsentwicklung, Gefährdung und Schutzprobleme. Moosgesellschaften. Schr.-R. Natursch. Niedersachsen 20, 9: 202 p.

    Google Scholar 

  • Duvigneaud, P., Kestemont, P., (ed.) 1977. Productivité biologique en Belgique. SCOPE, Trav. Sect. Belge Progr. Biol. Internat. (Paris-Gembloux): 617 p.

    Google Scholar 

  • Ellenberg, H., Weber, H.E., Düll R., Wirth, V., Werner, W., 2001. Zeigerwerte von Pflanzen in Mitteleuropa. 3. ed. Goltze, Göttingen. 262 p.

    Google Scholar 

  • Esseen, P.-A., 1994. Tree mortality patterns after experimental fragmentation of an old-growth conifer forest. Biol. Conserv. 68: 19–28.

    Google Scholar 

  • Esseen, P.-A., Renhorn, K.-E., 1998. Edge effects on an epiphytic lichen in fragmented forests. Conserv. Biol. 12: 1307–1317.

    Google Scholar 

  • Fabiszewski, J., 1967. Associations de lichens arboricoles dans les forets des Sudètes orientales. Vegetatio 15 : 137–165.

    Google Scholar 

  • Fabiszewski, J., 1968. Les lichens du Massif Snieznik et des Montagnes Bialskie dans les Sudètes orientales. Monogr. Botan. (Warszawa) 26: 115 p.

    Google Scholar 

  • Ellenberg, H., Mayer, R., Schauermann, J., 1986. Ökosystemforschung – Ergebnisse des Sollingprojekts 1966–1986. Ulmer, Stuttgart. 507 p.

    Google Scholar 

  • Frahm, J.-P.: Die Vegetation auf Rethdächern. PhD thesis, University of Kiel. (1972). 212 p

    Google Scholar 

  • Frahm, J.-P., 1993. Veränderungen der Moosflora in den letzten 20 Jahren. Bryol. Rundbriefe 13: 4–6.

    Google Scholar 

  • Frey, E., 1958. Die anthropogenen Einflüsse auf die Flechtenflora in verschiedenen Gebieten der Schweiz. Veröff. Geobot. Inst. Rübel, Zürich 33: 91–107.

    Google Scholar 

  • Gauslaa, Y., 1995. The Lobarion, an epiphytic community of ancient forests, threatened by acid rain. Lichenologist 27: 59–76.

    Google Scholar 

  • Gauslaa, Y., Holien, H., 1998. Acidity of boreal Picea abies-canopy lichens and their substratum, modified by local soils and airborne acidic depositions. Flora 193: 249–257.

    Google Scholar 

  • Gauslaa, Y., Solhaug, K.A., 1996. Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct. Ecol. 10: 344–354.

    Google Scholar 

  • Giordani, P., Calatayud, V., Stofer, S. et al. 2014. Detecting nitrogen critical loads on European forests by means of epiphytic lichens. A signal-to-noise evaluation. For. Ecol. Manage. 311: 19–40.

    Google Scholar 

  • Grodzinska, K., 1971. Acidification of tree bark as a measure of air pollution in Southern Poland. Bull. Acad. Polon. Sci., Sér. Biol. Cl. II, 19: 189–195.

    Google Scholar 

  • Hauck, M., 1992. Rote Liste der gefährdeten Flechten in Niedersachsen und Bremen. Informationsdienst Natursch. Nieders. (Hannover) 1/92: 44 p.

    Google Scholar 

  • Hauck, M., 1995a. Veränderungen der Flechtenflora im Raum Göttingen (Südniedersachsen). Herzogia 11: 207–218.

    Google Scholar 

  • Hauck, M., 1995b. Epiphytische Flechtenflora ausgewählter buchen- und eichenreicher Laubalthölzer in Niedersachsen. Informationsdienst Natursch. Nieders. (Hannover) 14: 55–70.

    Google Scholar 

  • Hauck, M., 2005. Epiphytic lichen diversity on dead and dying conifers under different levels of atmospheric pollution. Environ. Poll. 135: 111–119.

    Google Scholar 

  • Hauck, M., 2008. Susceptibility to acidic precipitation contributes to the decline of the terricolous lichens Cetraria aculeata and Cetraria islandica in central Europe. Environ. Poll. 152: 731–735.

    Google Scholar 

  • Hauck, M., Jürgens, S.-R., 2008. Usnic acid controls the acidity tolerance of lichens. Environ. Poll. 156: 115–122.

    Google Scholar 

  • Hauck, M., Paul, A., 2005. Manganese as a site factor for epiphytic lichens. Lichenologist 37: 409–423.

    Google Scholar 

  • Hauck, M., Runge, M., 2002. Stemflow chemistry and epiphytic lichen diversity in dieback-affected spruce forest of the Harz Mountains, Germany. Flora 197: 250–261.

    Google Scholar 

  • Hauck, M., Jung, R., Runge, M., 2000. Does water-holding capacity of bark have an influence on lichen performance in dieback-affected spruce forests? Lichenologist 32: 407–409.

    Google Scholar 

  • Hauck, M., Jürgens, S.-R., Brinkmann, M., Herminghaus, S., 2008. Surface hydrophobicity causes SO2 tolerance in lichens. Ann. Bot. 101: 531–539.

    Google Scholar 

  • Hauck, M., Otto, P.I., Dittrich, S., Jacob, M., Bade, C., Dörfler, I., Leuschner, C. 2011. Small increase in substratum pH causes the dieback of one of Europe’s most common lichens, Lecanora conizaeoides. Ann. Bot. (London) 108: 359–366.

    Google Scholar 

  • Hauck, M., de Bruyn, U., Leuschner, C. 2013. Dramatic diversity losses in epiphytic lichens in temperate broad-leaved forests during the last 150 years. Biol. Conserv. 157: 136–145.

    Google Scholar 

  • Hawksworth, D.L., 1990. The long-term effects of air pollutants on lichen communities in Europe and North America. In: Woodwell, G.M. (ed.): The Earth in Transition: Patterns and Processes of Biotic Impoverishment. Cambridge Univ. Press, Cambridge. pp. 45–64.

    Google Scholar 

  • Hertel, H., Schwaiger, J., Vorwerk, B., 2000. Die Flechtenflora der Staatsforste am Südrand Münchens, einst und jetzt. Hoppea, Denkschr. Regensburger Bot. Ges. 61: 445–524.

    Google Scholar 

  • Herzig, R., Urech, M., 1991. Flechten als Bioindikatoren. Integriertes biologisches Meßsystem der Luftverschmutzung für das Schweizer Mittelland. Bibliotheca Lichenologica (Stuttgart) 43: 283 p.

    Google Scholar 

  • Hilmo, O., Holien, H., 2002. Epiphytic lichen response to the edge environment in a boreal Picea abies forest in Central Norway. The Bryologist 105: 48–56.

    Google Scholar 

  • Hilmo, O. Sastad, S.M., 2001. Colonization of old-forest lichens in a young and an old boreal Picea abies forest: an experimental approach. Biol. Conserv. 102: 251–259.

    Google Scholar 

  • Hilmo, O., Hytteborn, H., Holien, H., 2005. Do different logging strategies influence the abundance of epiphytic chlorolichens? Lichenologist 37: 543–553.

    Google Scholar 

  • Holien, H., 1996. Influence of site and stand factors on the distribution of crustose lichens of the Caliciales in a suboceanic spruce forest area in central Norway. Lichenologist 28: 315–330.

    Google Scholar 

  • Holien, H., 1998. Lichens in spruce forest stands of different successional stages in central Norway with emphasis on diversity and old growth species. Nova Hedwigia 66: 283–324.

    Google Scholar 

  • Jacobsen, P., 1992. Flechten in Schleswig-Holstein: Bestand, Gefährdung und Bedeutung als Bioindikatoren. Mitt. Arb.gem. Geobot. Schlesw.-Holst. 42: 234 p.

    Google Scholar 

  • Jürging, P., 1975. Epiphytische Flechten als Bioindikatoren der Luftverunreinigung. Bibliotheca Lichenologica (Stuttgart) 4: 164 p.

    Google Scholar 

  • Kalb, K., 1970. Flechtengesellschaften der vorderen Ötztaler Alpen. Diss. Bot. 9: 118 p.

    Google Scholar 

  • Kandler, O., Poelt, J., 1984. Wiederbesiedlung der Innenstadt von München durch Flechten. Naturw. Rundschau (Stuttgart) 7: 90–95.

    Google Scholar 

  • Kershaw, K.A., 1985. Physiological Ecology of Lichens. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Kirschbaum, U., Marx, A., Schiek, J.E., 1996. Beurteilung der lufthygienischen Situation Gießens und Wetzlars mittels epiphytischer Flechten. J. Appl. Bot. 70: 78–96.

    Google Scholar 

  • Klement, O., 1966. Vom Flechtensterben im nördlichen Deutschland. Ber. Naturhist. Ges. Hannover 108: 31–39.

    Google Scholar 

  • Klement, O., 1971. Über Flechten der Eilenriede. Beih. Ber. Naturhist. Ges. Hannover 7: 139–142.

    Google Scholar 

  • Koperski, M., 1998. Zur Situation epiphytischer Moose in Eichen-Buchenaltbeständen des niedersächsischen Tieflandes. Forst u. Holz 53: 137–139.

    Google Scholar 

  • Köstner, B., Lange, O.L., 1986. Epiphytische Flechten in bayerischen Waldschadensgebieten des nördlichen Alpenraumes. Ber. Akad. Naturschutz Landschaftspfl. (Laufen) 10: 185–210.

    Google Scholar 

  • Kunze, M., 1972. Emittentenbezogene Flechtenkartierung aufgrund von Frequenzuntersuchungen. Oecologia 9: 123–133.

    Google Scholar 

  • Kunze, M., 1974. Mathematischer Zusammenhang zwischen der Frequenz epiphytischer Flechten und der Fluor-Immissionsrate am Beispiel der Aluminiumhütte Rheinfelden. Beih. Veröff. Landesstelle Naturschutz u. Landschaftspfl. Baden-Württemberg 5: 5–13.

    Google Scholar 

  • Kupfer-Wesely, E., Türk, R., 1987. Epiphytische Flechtengesellschaften im Traunviertel (Oberösterreich). Stapfia 15: 138 p.

    Google Scholar 

  • Lahm, G., 1885. Zusammenstellung der in Westfalen beobachteten Flechten unter Berücksichtigung der Rheinprovinz. Münster/W.

    Google Scholar 

  • Lange, O.L., 2000. Photosynthetic performance of a gelatinous lichen under temperate habitat conditions: long-term monitoring of CO2 exchange of Collema cristatum. In: Schroeter, B., Schlensog, M., Green, T.G.A. (eds.): New Aspects in Cryptogamic Research. Contribution in Honour of Ludger Kappen. Bibliotheca Lichenologica (Stuttgart): pp. 307–332.

    Google Scholar 

  • Lange, O.L., 2002. Photosynthetic productivity of the epilithic lichen Lecanora muralis: Long-term field monitoring of CO2 gas exchange and its physiological interpretation. I. Dependence of photosynthesis on water content, light, temperature, and CO2 concentration from laboratory measurements. Flora 197: 23–249.

    Google Scholar 

  • Lange, O.L., 2003. Photosynthetic productivity of the epilithic lichen Lecanora muralis: Long-term field monitoring of CO2 gas exchange and its physiological interpretation. III. Diel, seasonal, and annual carbon budgets. Flora 198: 277–292.

    Google Scholar 

  • Lange, O.L., Büdel, B., Meyer, A., Kilian, E., 1993. Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25: 175–189.

    Google Scholar 

  • Lötschert, W., Köhm, H.-J., 1973. pH-Wert und S-Gehalt der Baumborke in Immissionsgebieten. Oecol. Plant. 8: 199–209.

    Google Scholar 

  • Lötschert, W., Wandtner, R., Hiller, H., 1975. Schwermetallanreicherung bei Bodenmoosen in Immissionsgebieten. Ber. Deut. Bot. Ges. 88: 419–431.

    Google Scholar 

  • Macher, M., Steubing, L., 1986. Flechten als Bioindikatoren zur immissionsökologischen Waldzustandserfassung im Nationalpark Bayerischer Wald. Verh. Ges. Ökol. 14: 335–342.

    Google Scholar 

  • Marstaller, R., 1993. Systematische Übersicht der Moosgesellschaften Zentraleuropas. Herzogia 9: 513–541.

    Google Scholar 

  • Mayer, W., Pfefferkorn-Dellali, V., Türk, R., Dullinger, S., Mirtl, M., Dirnböck, T. 2013. Significant decrease in epiphytic lichen diversity in a remote area in the European Alps, Austria. Basic Appl. Ecol. 14: 396–403.

    Google Scholar 

  • Meinunger, L. 1992. Florenatlas der Moose und Gefäßpflanzen des Thüringer Waldes, der Rhön und angrenzender Gebiete. Haussknechtia, Beihefte 3. Koeltz Sci. Books, Königstein.

    Google Scholar 

  • Möller, H., Daniels, F.J.A., 2000. Untersuchungen zur epiphytischen Flechtenflora ausgewählter Stadtbiotope der Stadt Münster, Westfalen. Natur und Heimat 60: 65–78.

    Google Scholar 

  • Muhle, H., 1977. Ein Epiphytenkataster niedersächsischer Naturwaldreservate. Mitt. Florst.-Soziol. Arb.gem. N.F. 19/20: 47–62.

    Google Scholar 

  • Müller, J., 1981. Experimentell-ökologische Untersuchungen zum Flechtenvorkommen auf Bäumen an naturnahen Standorten. Hochschulsammlung Naturwiss. Biol. 14: 1–322.

    Google Scholar 

  • Nascimbene, J., Thor, G., Nimis, P.L., 2013. Effects of forest management on epiphyte lichens in temperate deciduous forests of Europe – a review. For. Ecol. Manage. 298: 27–38.

    Google Scholar 

  • Nash, T.H., Nash, E.H., 1974. Sensitivity of mosses to sulfur dioxide. Oecologia 17: 257–263.

    Google Scholar 

  • Olsson, K., 1995. Changes in epiphytic lichen and moss flora in some beech forests in southern Sweden during 15 years. Ecol. Bull. 44: 238–247.

    Google Scholar 

  • Renhorn, K.-E., Esseen, P.-A., Palmqvist, K., Sundberg, B., 1997. Growth and vitality of epiphytic lichens. I. Responses to microclimate along a forest edge-interior gradient. Oecologia 109: 1–9.

    Google Scholar 

  • Rikkinen, J., 1995. What’s behind the pretty colours? A study of the photobiology of lichens. Bryobrothera 4: 1–239.

    Google Scholar 

  • Rose, F., 1988. Phytogeographical and ecological aspects of Lobarion communities in Europe. Bot. J. Linnean Soc. 96: 69–79.

    Google Scholar 

  • Rose, F., 1992. Temperate forest management: its effects on bryophyte and lichen floras and habitats. In: Bates, J.W., Farmer, A.M. (eds.): Bryophytes and Lichens in a Changing Environment. Clarendon Press, Oxford. pp. 211–233.

    Google Scholar 

  • Sandstede, H., 1950. Veränderungen in der Flora unserer engeren Heimat. Oldenburger Jahrbuch 50: 304–311.

    Google Scholar 

  • Schmidt, M., Ewald, J., Fischer, A., v. Oheimb, G., Kriebitzsch, W.-U., Ellenberg, H., Schmidt, W., 2003. Liste der Waldgefäßpflanzen Deutschlands. Mitt. Bundesforschungsanst. f. Forst- u. Holzwirtsch. (Hamburg) 212: 1–36.

    Google Scholar 

  • Schmidt, M., Kriebitzsch, W.-U., Ewald, J. (eds.) 2011. Waldartenliste der Farn- und Blütenpflanzen, Moose und Flechten Deutschlands. BfN-Skripten 299. Bundesamt f. Naturschutz, Bonn.

    Google Scholar 

  • Schmull, M., Hauck, M. 2003. Element microdistribution in the bark of Abies balsamica and Picea rubens and its impact on epiphytic lichen abundance on Whiteface Mountain, New York. Flora 198: 293-303.

    Google Scholar 

  • Schneider, R., 1985. Kartierung der epiphytischen Flechtenvegetation im Raum Bremen – Lüneburger Heide. Veröff. Übersee-Mus. Bremen R.A. 7: 129 p.

    Google Scholar 

  • Seaward, M.R.D. (ed.), 1977. Lichen Ecology. Academic Press, London. 550 p.

    Google Scholar 

  • Seaward, M.R.D., 1993. Lichens and sulphur dioxide air pollution: field studies. Environ. Res. 1: 73–91.

    Google Scholar 

  • Sillett, S.C., McCune, B., Peck, J.E., Rambo, T.R., Ruchty, A., 2000. Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol. Appl. 10: 789–799.

    Google Scholar 

  • Skye, E., 1968. Lichens and air pollution. A study of cryptogamic epiphytes and environment in the Stockholm region. Acta Phytogeogr. Suecica 52: 1–123.

    Google Scholar 

  • Sochting, U., Johnson, I., 1974. Changes in the distribution of epiphytic lichens in the Copenhagen area from 1936 to 1972. Botan. Tidskr. 69: 60–63.

    Google Scholar 

  • Solhaug, K.A., Gauslaa, Y., 1996. Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108: 412–418.

    Google Scholar 

  • Solhaug, K.A., Gauslaa, Y., Nybakken, L., Bilger, W., 2003. UV-induction of sun-screening pigments in lichens. New Phytol. 158: 91–100.

    Google Scholar 

  • Thiele, A., 1974. Luftverunreinigungen und Stadtklima im Großraum München, insbesondere in ihrer Auswirkung auf epixyle Testflechten. Bonner Geogr. Abh. 49: 175 p.

    Google Scholar 

  • Tibell, L., 1992. Crustose lichens as indicators of forest continuity in boreal coniferous forests. Nordic J. Bot. 12: 427–450.

    Google Scholar 

  • Tobler, F., Mattick, F., 1938. Die Flechtenbestände der Heiden und der Reitdächer Nordwestdeutschlands. Bibl. Botanica 117: 1–72.

    Google Scholar 

  • Türk, R., Wirth, V., 1975. The pH dependence of SO2 damage to lichens. Oecologia 19: 285–291.

    Google Scholar 

  • van Herk, C.M., 1999. Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31: 9–20.

    Google Scholar 

  • van Herk, C.M., 2001. Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33: 419–441.

    Google Scholar 

  • van Herk, C.M., Aptroot, A., 1998. Recovery of epiphytic lichens in the Netherlands. British Lichen Soc. Bull. 82: 22–26.

    Google Scholar 

  • van Herk, C.M., Aptroot, A., van Dobben, H.F., 2002. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34: 141–154.

    Google Scholar 

  • van Herk, C. M., Mathijssen-Spiekman, E. A. M., de Zwart, D. 2003. Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35: 347–360.

    Google Scholar 

  • Wilmanns, O., 1966. Anthropogener Wandel der Kryptogamen-Vegetation in Südwestdeutschland. Ber. Geobot. Inst. ETH, Stiftg. Rübel, Zürich 37: 74–87.

    Google Scholar 

  • Wirth, V., 1968. Soziologie, Standortsökologie und Areal des Lobarion pulmonariae im Südschwarzwald. Bot. Jb. 88: 317–365.

    Google Scholar 

  • Wirth, V., 1972. Die Silikatflechten-Gemeinschaften im außeralpinen Zentraleuropa. Diss. Bot. 17. 306 p.

    Google Scholar 

  • Wirth, V., 1978. Die Kartierung von Flechten in Baden-Württemberg und ihr Beitrag zum Schutz von Arten und Biotopen. Beih. Veröff. Natursch. Landschaftspfl. Baden-Württemb. 11: 135–154.

    Google Scholar 

  • Wirth, V., 1980. Flechtenflora. Ökologische Kennzeichnung und Bestimmung der Flechten Süddeutschlands und angrenzender Gebiete. Ulmer, Stuttgart. 552 p.

    Google Scholar 

  • Wirth., V.., 1985. Zur Ausbreitung, Herkunft und Ökologie anthropogen geförderter Rinden- und Holzflechten. Tuexenia 5: 523–535.

    Google Scholar 

  • Wirth, V., 1987. Die Flechten Baden-Württembergs. Verbreitungsatlas. Ulmer, Stuttgart. 528 p.

    Google Scholar 

  • Wirth, V., 1988. Phytosociological approaches to air pollution monitoring with lichens. Bibliotheca Lichenologica 30: 91–107.

    Google Scholar 

  • Wirth, J., 1993. Rhamno-Prunetea. In: Mucina, L., Grabherr, G., Wallnhöfer, S. (eds.): Die Pflanzengesellschaften Österreichs. 3. Wälder und Gebüsche. Fischer, Jena. pp. 60–84.

    Google Scholar 

  • Wirth, J., 1993b. Rhamno-Prunetea. In: Mucina, L., Grabherr, G., Wallnhöfer, S. (eds.): Die Pflanzengesellschaften Österreichs. 3. Wälder und Gebüsche. Fischer, Jena. pp. 60-84.

    Google Scholar 

  • Wirth, V., 1993a. Trendwende bei der Ausbreitung der anthropogen geförderten Flechte Lecanora coniazaeoides? Phytocoenologia 23: 625–636.

    Google Scholar 

  • Wirth, V., 1995. Die Flechten Baden-Württembergs. 2. ed. Teil 1 u. 2. Ulmer, Stuttgart. 1006 p.

    Google Scholar 

  • Wirth, V., Fuchs, M., 1980. Zur Veränderung der Flechtenflora in Bayern. Forderungen und Möglichkeiten des Artenschutzes. Schriftenr. Naturschutz Landschaftspfl. 12: 29–43.

    Google Scholar 

  • Wirth, V., Schöller, H., Scholz, P. et al., 1996. Rote Liste der Flechten (Lichenes) der Bundesrepublik Deutschland. Schriftenr. f. Vegetationskde (Bonn-Bad Godesberg) 28: 307–368.

    Google Scholar 

  • Wittmann, H., Türk, R., 1988. Immissionsbedingte Flechtenzonen im Bundesland Salzburg (Österreich) und ihre Beziehungen zum Problemkreis „Waldsterben“. Ber. Akad. Naturschutz Landschaftpfl. (Laufen) 12: 247–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leuschner, C., Ellenberg, H. (2017). Epiphyte Vegetation. In: Ecology of Central European Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-43042-3_10

Download citation

Publish with us

Policies and ethics