Skip to main content

Laminitis: A Multisystems Veterinary Perspective with Omics Technologies

  • Chapter
  • First Online:
Periparturient Diseases of Dairy Cows

Abstract

Laminitis and lameness-associated diseases in dairy cattle have plagued the dairy industry for decades. It is a costly illness with significant impact on dairy production and the animal’s health and welfare. Laminitis in dairy cattle is complex and the initiation, progression, and severity of disease is affected by multiple factors including the individual animal’s health, heritable traits, and its environment. As such, understanding the pathophysiology of bovine laminitis in dairy cattle requires research that explores both local events (i.e., histopathology alterations and mechanical injury) directly affecting the hoof and indirect pathophysiology perturbations (i.e., hyperinsulinemia) distant from the hoof. This provides a more generalized understanding of multiple physiologic systems—a systems veterinary approach. Presently, there is a relative paucity of information investigating the induction and progression of this disease in dairy cattle. Incorporating new omics technologies into the study of laminitis in cattle should shed light on the disease processes. Indeed, omics sciences, namely genomics, transcriptomics, proteomics, and metabolomics demonstrate that laminitis is a collection of complex changes in gene expression, protein translation, and the metabolism of components involved in the inflammatory process. Most certainly bovine laminitis is associated with increased production of pro-inflammatory cytokines, matrix metalloproteinases, and the metabolism of amino acids, carbohydrates, lipids, and energy producing molecules. As research advances, a comprehensive understanding of the pathophysiology of laminitis in dairy cattle will ensue and this could translate into better animal husbandry practices for the dairy industry and treatment modalities for mitigating the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almeida PE, Weber PSD, Burton JL et al (2007) Gene expression profiling of peripheral mononuclear cells in lame dairy cows with foot lesions. Vet Immunol Immunopathol 120:234–245

    Article  CAS  PubMed  Google Scholar 

  • Ametaj BN, Zebeli Q, Saleem F et al (2010) Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 6:583–594

    Article  CAS  Google Scholar 

  • Asplin KE, Patterson-Kane JC, Sillence MN et al (2010) Histopathology of insulin-induced laminitis in ponies. Equine Vet J 42(8):700–706

    Article  CAS  PubMed  Google Scholar 

  • Burvenich C, Van Merris V, Mehrzad J et al (2003) Severity of E. coli mastitis is mainly determined by cow factors. Vet Res 34:521–564

    Article  PubMed  Google Scholar 

  • Cha E, Hertl JA, Bar D, et al (2010) The cost of different types of lameness in dairy cows calculated by dynamic programming. Prev Vet Med 97(1):1–8.

    Google Scholar 

  • Cole JB, Wiggans GR, Ma L et al (2011) Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary US Holstein cows. BMC Genomics 12:408

    Article  PubMed  PubMed Central  Google Scholar 

  • Columella 2007, De re rustica, 6. 12. Translated by Christopher S. Mackay of the Department of History and Classics of the University of Alberta

    Google Scholar 

  • Danscher AM, Enemark JMD, Telezhenko E et al (2009) Oligofructose overload induces lameness in cattle. J Dairy Sci 92:607–616

    Article  CAS  PubMed  Google Scholar 

  • Danscher AM, Toelboell TH, Wattle O (2010) Biomechanics and histology of bovine claw suspensory tissue in early acute laminitis. J Dairy Sci 93:53–62

    Article  CAS  PubMed  Google Scholar 

  • de Laat MA, Kyaw-Tanner MT, Sillence MN et al (2012) Advanced glycation endoproducts in horses with insulin-induced laminitis. Vet Immunol Immunopathol 145:395–401

    Article  PubMed  Google Scholar 

  • Debnath M, Prasad GBKS, Bisen PS (2010) Molecular diagnostics: promises and possibilities. Springer, Dordrecht, p 527

    Book  Google Scholar 

  • Dong SW, Zhang SD, Wang DS et al (2015) Comparative proteomics analysis provide novel insight into laminitis in Chinese Holstein cows. BMC Vet Res 11:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunlop RH, Williams DJ (1996) Veterinary medicine: an illustrated history. Mosby, St. Louis, p 53

    Google Scholar 

  • Edwards GD (1972) Hereditary laminitis in Jersey cattle. In: Proceedings of the VIIth World Buiatrics Congress, London, pp 663–668

    Google Scholar 

  • Galbraith H, Flannigan S, Swan L et al (2006) Proteomic evaluation of tissues at functionally important sites in the bovine claw. Cattle Pract 14:127–137

    Google Scholar 

  • Hirschberg RM, Plendl J (2005) Pododermal angiogenesis and angioadaptation in the bovine claw. Mircosc Res Tech 66:145–155

    Article  Google Scholar 

  • Kauffman KD (1996) The U.S. Army as a rational economic agent: the choice of draft animals during the civil war. East Econ J 22(3):333–343

    Google Scholar 

  • Magata F, Ishida Y, Miyamoto A et al (2015) Comparison of bacterial endotoxin lipopolysaccharide concentrations in the blood, ovarian follicular fluid and uterine fluid: a clinical case of bovine metritis. J Vet Med Sci 77:81–84

    Article  CAS  PubMed  Google Scholar 

  • Mankowski JL, Graham DR (2008) Potential proteomic-based strategies for understanding laminitis: Predictions and pathogenesis. J Equine Vet Sci 28(8):484–487

    Article  Google Scholar 

  • Mason S (2012) The anatomy of the bovine hoof. http://dairyhoofhealth/40-hoof-anatomy/new-functional-foot-care-video. Accessed 10 Sept 2016

    Google Scholar 

  • Matukumalli LK, Lawley CT et al (2009) Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 4(4):1–13

    Article  Google Scholar 

  • Mills JA, Zarlenga DS et al (2009) Age, segment, and horn disease affect expression of cytokines, growth factors, and receptors in the epidermis and dermis of the bovine claw. J Dairy Sci 92:5977–5987

    Article  CAS  PubMed  Google Scholar 

  • Nordlund KV, Cook NB, Oetzel GR (2004) Investigation strategies for laminitis problem herds. J Dairy Sci 87(Suppl E):E2–E35

    Google Scholar 

  • Ødegård C, Svendsen M, Heringstad B (2014) Genetic correlations between claw health and feet and leg conformation in Norwegian Red Cows. J Dairy Sci 97:4522–4529

    Article  PubMed  Google Scholar 

  • O’Driscoll K, McCabe M, Earley B (2015) Differences in leukocyte profile, gene expression, and metabolite status of dairy cows with or without sole ulcers. J Dairy Sci 98:1685–1695

    Article  PubMed  Google Scholar 

  • Osorio JS, Fraser BC et al (2012) Corium tissue expression of genes associated with inflammation, oxidative stress, and keratin formation in relation to lameness in dairy cows. J Dairy Sci 95:6388–6396

    Article  CAS  PubMed  Google Scholar 

  • Ossent P, Lischer C (1998) Bovine laminitis: the lesions and their pathogenesis, 4th edn. Vet Form, pp 415–427

    Google Scholar 

  • Ome (2016) Oxford Dictionary. http://en.oxforddictionaries.com/definition/us/-ome. Accessed 10 Sept 2016

  • Räber M, Lischer CJ et al (2004) The bovine digital cushion—a descriptive anatomical study. Vet J 167:258–264

    Google Scholar 

  • Saleem F, Ametaj BN, Bouatra S, Mandal R, Zebeli Q, Dunn SM, Wishart DS (2012) A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J Dairy Sci 95:6606–6623

    Article  CAS  PubMed  Google Scholar 

  • Saleem F, Bouatra S, Guo AC et al (2013) The Bovine ruminal fluid metabolome. Metabolomics 9:360–378

    Article  CAS  Google Scholar 

  • Severin T (1989) Retracting the first crusade. Natl Geogr 176(3):326–365

    Google Scholar 

  • Shively MJ (1984) Veterinary anatomy: basic, comparative and clinical. Texas A&M University Press, College Station, p 561

    Google Scholar 

  • Sisson S, Grossman JD, Getty R (1975) The anatomy of the domestic animals, vol 1, 5th edn. WB Saunders Company, London, pp 788–789

    Google Scholar 

  • Smith F (1976) The early history of veterinary literature, vol 2. JA Allen, London

    Google Scholar 

  • Stalberger RJ, Kersting KW (1998) Peracute toxic coliform mastitis. Iowa State Univ Vet 50(1):48–53

    Google Scholar 

  • Takahashi K, Young BA (1981) Effects of grain overfeeding and histamine injection on physiological responses related to acute bovine laminitis. Jpn Vet Sci 1(43):375–385

    Article  Google Scholar 

  • Thoefner MB, Pollitt CC et al (2004) Acute bovine laminitis: a new induction model using alimentary oligofructose overload. J Dairy Sci 87:2932–2940

    Article  CAS  PubMed  Google Scholar 

  • Tølbøll TH, Danscher AM, Anderson PH et al (2012) Proteomics: a new tool in bovine claw disease research. Vet J 193:694–700

    Article  PubMed  Google Scholar 

  • Tomlinson DJ, Mülling CH, Faklet TM (2004) Invited review: formation of keratins in the bovine claw: roles of hormones, minerals, and vitamins in functional claw integrity. J Dairy Sci 87:797–809

    Article  CAS  PubMed  Google Scholar 

  • van der Spek D, van Arendonk JAM, AAA V, Bovenhuis H (2013) Genetic parameters of claw disorders and the effect of preselecting cows for trimming. J Dairy Sci 96:6070–6078

    Article  PubMed  Google Scholar 

  • van der Spek D, van Arendonk JAM, Bovenhuis H (2015) Genome wide association study for claw disorders and trimming status in dairy cattle. J Dairy Sci 98:1286–1295

    Article  PubMed  Google Scholar 

  • Webster AJE (1997) Review: farm animal welfare: the five freedoms and the free market. Vet J 161:229–237

    Article  Google Scholar 

  • Whitaker DA, Kelly JM, Smith S (2000) Disposal and disease rates in 340 British dairy herds. Vet Rec 146:363–367

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15:473–484

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Hailemariam D, Dervishi E, Deng Q, Goldansaz SA, Dunn SA, Ametaj BN (2015) 90 Alterations of innate immunity reactants in transition dairy cows before clinical signs of lameness. Animals 5:717–747

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Lingwell SUN, Shi SHU et al (2016) Nuclear magnetic resonance-based serum metabolic profiling of dairy cows with footrot. J Vet Med Sci 78:1421–1428

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thank you to Dr. Christopher S. MacKay, Professor of History and Classics at the University of Alberta, Canada, for help translating and interpreting the writings of Columella. Thank you as well to Dr. Trina C. Uwiera, Associate Professor of Surgery at the University of Alberta, Canada, for creating Fig. 9.1; to delineate the anatomy of the bovine hoof, a picture is truly worth a thousand words.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. E. Uwiera D.V.M., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uwiera, R.R.E., Egyedy, A.F., Ametaj, B.N. (2017). Laminitis: A Multisystems Veterinary Perspective with Omics Technologies. In: Ametaj, B. (eds) Periparturient Diseases of Dairy Cows. Springer, Cham. https://doi.org/10.1007/978-3-319-43033-1_9

Download citation

Publish with us

Policies and ethics