Skip to main content

Molecular Mining of Follicular Fluid for Reliable Biomarkers of Human Oocyte and Embryo Developmental Competence

  • Chapter
  • First Online:
In Vitro Fertilization
  • 2093 Accesses

Abstract

The occurrence of an intrafollicular biochemistry that can be used to relate oocyte developmental competence with quantitative and qualitative aspects of specific components of follicular fluid aspirated at ovum retrieval has been a goal of research in clinical IVF for decades. As a complex mixture of bioactive molecules, some produced in situ and others serum borne, there is no shortage of candidates for investigation. This chapter focuses on current methods of high-resolution biochemical analysis that can be applied to follicular biochemistry, which candidates may be the most promising in this regard, and specific investigational approaches that may have the greatest potential to fulfill this goal. In particular, emphasis is placed on whether there is a need to know both the target(s) and function(s) of candidate molecules as related to the developmental biology of the oocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balaban B, et al. Alpha scientists in reproductive medicine and ESHRE special interest group of embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.

    Article  Google Scholar 

  2. Botros L, Sakkas D, Seli E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod. 2008;14:679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scott R, Seli E, Miller L, et al. Noninvasive metabolomic profiling of human embryo culture medium using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril. 2008;90:77–83.

    Article  PubMed  Google Scholar 

  4. Seli E, Botros L, Sakkas D, Burns D. Noninvasive profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2008;90:2183–9.

    Article  PubMed  Google Scholar 

  5. McKenzie LJ, Pangas SA, Carson SA, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19:2869–74.

    Article  CAS  PubMed  Google Scholar 

  6. Cillo F, Tiziana A, Brevini L, et al. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134:645–50.

    Article  CAS  PubMed  Google Scholar 

  7. Jones G, Cram D, Song B, et al. Novel strategy with potential to identify developmentally competent IVF blastocysts. Hum Reprod. 2008;23:1748–59.

    Article  PubMed  Google Scholar 

  8. Michael A. Do biochemical predictors of outcome exist? In: Van Blerkom J, Gregory L, editors. Essential IVF: basic research and clinical applications. Boston: Kluwer Academic; 2004. p. 81–110.

    Chapter  Google Scholar 

  9. Van Blerkom J, Trout S. Oocyte selection in contemporary clinical IVF: do follicular markers of oocyte competence exit? In: Elder K, Cohen J, editors. Human preimplantation embryo selection. London: Informa press; 2007. p. 301–24.

    Chapter  Google Scholar 

  10. Edwards R. Causes of early embryonic loss in human pregnancy. Hum Reprod. 1986;1:85–98.

    Google Scholar 

  11. Kuliev A, Cieslak J, Llkevitch Y, Verlinsky Y. Chromosomal abnormalities in a series of 6,733 human oocytes in preimplantation diagnosis for age-related aneuploidies. Reprod Biomed Online. 2003;6:54–9.

    Article  PubMed  Google Scholar 

  12. Kalousek D. Pathogenesis of chromosomal mosaicism and its effect on early human development. Am J Med Genet. 2000;91:39–45.

    Article  CAS  PubMed  Google Scholar 

  13. Ambartsumyan G, Clark A. Aneuploidy and early human embryo development. Hum Mol Genet. 2008;17(R1):R10–5.

    Article  CAS  PubMed  Google Scholar 

  14. Menezo Y, Guerin P. In: Elder K, Cohen J, editors.. Human preimplantation embryo selection Preimplantation embryo metabolism and embryo interaction with the in vitro environment. London: Informa Press; 2007. p. 191–200.

    Google Scholar 

  15. Tam P, Ng T, Mao K. Beta-endorphin levels in preovulatory follicles and the outcome of in vitro fertilization. J In Vitro Fertil Embryo Transf. 1988;5:91–5.

    Article  CAS  Google Scholar 

  16. Cioffi JV, Blerkom JA, et al. The expression of leptin and its receptors in preovulatory human follicles. Mol Hum Reprod. 1997;3:467–72.

    Article  CAS  PubMed  Google Scholar 

  17. Oosterhuis G, Vermes I, Lambalk C, et al. Insulin-like growth factor (IGF)-1 and IGF binding protein-3 concentration in follicular fluid from human stimulated follicles. Fertil Steril. 1998;90:60–4.

    Google Scholar 

  18. Mendoza C, Cremades N, Ruiz-Requena E, et al. Relationship between fertilization results after intracytoplasmic sperm injection, and intrafollicular steroid, pituitary hormone and cytokine concentrations. Hum Reprod. 1999;13:863–8.

    Google Scholar 

  19. Mendoza C, Ruiz-Requena E, Ortega E, et al. Follicular fluid markers of oocyte developmental potential. Hum Reprod. 2002;17:1017–22.

    Article  CAS  PubMed  Google Scholar 

  20. Michael A, Collins T, Norgate D, Gregory L, et al. Relationship between ovarian cortisol:cortisone ratios and the clinical outcome of in vitro fertilization and embryo transfer (IVF-ET). Clin Endocrinol. 1999;51:535–40.

    Article  CAS  Google Scholar 

  21. Sabatini L, Wilson C, Lower A, Al-Shawaf T, Grudzinskas J. Superoxide dismutase activity in human follicular fluid after controlled ovarian hyperstimulation in women undergoing in vitro fertilization. Fertil Steril. 1999;72:1027–34.

    Article  CAS  PubMed  Google Scholar 

  22. Lee K, Joo B, Na Y, et al. Relationships between concentrations of tumor necrosis factor-alpha and nitric oxide in follicular fluid and oocyte quality. Fertil Steril. 2000;17:222–8.

    CAS  Google Scholar 

  23. Oyawoye O, Abdel Gadir A, Garner A, et al. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod. 2003;18:2270–4.

    Article  CAS  PubMed  Google Scholar 

  24. Antczak M. The synthetic and secretory behaviors (nonsteroidal) of ovarian follicular granulosa cells: parallels to cells of the endothelial lineage. In: Van Blerkom J, Gregory L, editors. Essential IVF: basic research and clinical applications. Boston: Kluwer Academic; 2004. p. 1–42.

    Google Scholar 

  25. Ocal P, Aydin S, Cepni I, et al. Follicular fluid concentration of vascular endothelial growth factor, inhibin A and inhibin B in IVF cycles: are they markers for ovarian response and pregnancy outcome? Eur J Obstet Gynecol Reprod Biol. 2004;115:194–9.

    Article  CAS  PubMed  Google Scholar 

  26. Pasqualotto E, Agarwal A, Sharma R, et al. Effect of oxidative stress in follicular fluid on the outcome of assisted reproduction procedures. Fertil Steril. 2004;81:973–6.

    Article  CAS  PubMed  Google Scholar 

  27. Wunder D, Mueller M, Birkhauser M, Bersinger N. Steroids and protein markers in the follicular fluid as indicators of oocyte quality in patients with and without endometriosis. J Assist Reprod Genet. 2005;22:257–64.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu Y, Chang C, Cai J, et al. High bone morphogenetic protein-15 level in follicular fluid is associated with high quality oocyte and subsequent embryonic development. Hum Reprod. 2007;22:1526–31.

    Article  CAS  PubMed  Google Scholar 

  29. Ledee N, Lombroso R, Lombardeli L, Selva J, et al. Cytokines and chemokines in follicular fluids and potential of the corresponding embryo: the role of granulocyte colony-stimulating factor. Hum Reprod. 2008;23:2001–9.

    Article  CAS  PubMed  Google Scholar 

  30. Sinclair K, Lunn L, Kwong Y, et al. Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development. Reprod Biomed Online. 2008;16:859–68.

    Article  CAS  PubMed  Google Scholar 

  31. Godard NM, Pukazhenthi BS, Wildt DE, Comizzoli P. Paracrine factors from cumulus-enclosed oocytes ensure the successful maturation and fertilization in vitro of denuded oocytes in the cat model. Fertil Steril. 2009;91(5 Suppl):2051–60.

    Article  CAS  PubMed  Google Scholar 

  32. Revelli A, Delle Piane L, Casano S, et al. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7:40–53.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rodgers R, Irving-Rodgers H. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82:1021–9.

    Article  CAS  PubMed  Google Scholar 

  34. Makabe S, Van Blerkom J. Human female reproduction: ovarian development to early embryogenesis. New York: Taylor and Francis; 2006.

    Google Scholar 

  35. Van Blerkom J, Motta P. The cellular basis of mammalian reproduction. Baltimore: Urban and Schwartenberg; 1979.

    Google Scholar 

  36. Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11:797–813.

    Article  PubMed  Google Scholar 

  37. Antczak M, Van Blerkom J. Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol Hum Reprod. 1997;3:1067–86.

    Article  CAS  PubMed  Google Scholar 

  38. Antczak M, Van Blerkom J, Clark A. A novel mechanism of vascular endothelial growth factor, leptin and transforming growth factor beta2 sequestration in a subpopulation of human ovarian follicle cells. Hum Reprod. 1997;12:2226–34.

    Article  CAS  PubMed  Google Scholar 

  39. Monteleone P, Giovanni A, Simi G, et al. Follicular fluid VEGF levels directly correlate with perifollicular blood flow in normoresponder patients undergoing IVF. J Assist Reprod Genet. 2008;25:183–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barroso G, Barrioneuvo M, Rao O, Graham L, et al. Vascular endothelial growth factor, nitric oxide, and leptin follicular fluid levels correlate negatively with embryo quality in IVF patients. Fertil Steril. 1999;72:1024–6.

    Article  CAS  PubMed  Google Scholar 

  41. Mantzoros C, Cramer D, Liberman R, Barbieri R. Predictive value of serum and follicular fluid leptin concentrations during assisted reproductive cycles in normal women and in women with polycystic ovarian syndrome. Hum Reprod. 2000;15:539–44.

    Article  CAS  PubMed  Google Scholar 

  42. Tsai E, Yang C, Chen S, et al. Leptin affects pregnancy outcome of in vitro fertilization and steroidogenesis of human granulosa cells. J Assist Reprod Genet. 2002;19:169–76.

    Article  PubMed  PubMed Central  Google Scholar 

  43. DePlacido G, Alviggi C, Clariza R, et al. Intra-follicular leptin concentration as a predictive factor for in vitro oocyte fertilization in assisted reproductive techniques. J Endocrinol Investig. 2006;29:719–26.

    Article  CAS  Google Scholar 

  44. Hazout A, Bouchard P, Seifer D, et al. Serum anti-mullerian hormone/mullerian-inhibiting substance appears to be a more discriminatory marker of assisted reproductive technology outcome than follicle-stimulating hormone, inhibin B, or estradiol. Fertil Steril. 2004;82:1323–9.

    Article  CAS  PubMed  Google Scholar 

  45. Silberstein T, MacLaughlin D, Shari I, et al. Mullerian inhibiting substance levels at the time of HCG administration in IVF cycles predicts both ovarian reserve and embryo morphology. Hum Reprod. 2006;21:159–63.

    Article  CAS  PubMed  Google Scholar 

  46. Eldar-Geva T, Ben-Chetrit A, Spitz I, et al. Dynamic assays of inhibin B, anti-mullerian hormone and estradiol following FSH stimulation and ovarian ultrasonography as predictors of IVF outcome. Hum Reprod. 2005;20:3178–83.

    Article  CAS  PubMed  Google Scholar 

  47. Bayer S, Armant D, Dlugi A, Seibel M. Spectrophotometric absorbance of follicular fluid: a predictor of oocyte fertilizing capability. Fertil Steril. 1988;49:442–6.

    Article  CAS  PubMed  Google Scholar 

  48. Aharoni A, Ric de Vos C, Verhoeven H, et al. Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS. 2002;6:217–34.

    Article  CAS  PubMed  Google Scholar 

  49. Singh R, Sinclair K. Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology. 2007;68(Suppl 1):S56–62.

    Article  CAS  PubMed  Google Scholar 

  50. Piñero-Sagredo E, Nunes S, de Los Santos MJ. NMR metabolic profile of human follicular fluid. NMR Biomed. 2010;23(5):485–95.

    Article  PubMed  Google Scholar 

  51. Gregory L. Peri-follicular vascularity: a marker of follicular heterogeneity and oocyte competence and a predictor of implantation in assisted conception cycles. In: Van Blerkom J, Gregory L, editors. Essential IVF: basic research and clinical applications. Boston: Kluwer Academic; 2004. p. 59–80.

    Chapter  Google Scholar 

  52. Van Blerkom J. An overview of determinants of oocyte and embryo developmental competence: specificity, accuracy and applicability in clinical IVF. In: Gerris J, Racowsky C, et al., editors. Single embryo transfer. New York: Cambridge University Press; 2009. p. 17–52.

    Google Scholar 

  53. Van Blerkom J. Follicular influences on oocyte and embryo competence. In: De Jonge C, Barratt C, editors. Assisted reproductive technology. Cambridge: Cambridge University Press; 2002. p. 81–105.

    Google Scholar 

  54. Van Blerkom J, Antczak M, Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod. 1997;12(5):1047–55.

    Article  PubMed  Google Scholar 

  55. Semenza G. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–78.

    Article  CAS  PubMed  Google Scholar 

  56. Bruick R. Oxygen sensing in the hypoxic response pathway: regulation of hypoxia-inducible transcription factor. Genes Dev. 2003;17:2614–23.

    Article  CAS  PubMed  Google Scholar 

  57. Shrestha S, Costello M, Sjoblom P, et al. Power Doppler ultrasound assessment of follicular vascularity in the early follicular phase and its relationship with outcome in in vitro fertilization. J Assist Reprod Genet. 2006;23:1610169.

    Article  Google Scholar 

  58. Robson S, Barry M, Norman R. Power Doppler assessment of follicular vascularity at the time of oocyte retrieval in in vitro fertilization cycles. Fertil Steril. 2008;90:2179–82.

    Article  PubMed  Google Scholar 

  59. Malamitsi-Puchner A, Sarandakou A, Baka S, et al. Concentrations of angiogenic factors in follicular fluid and oocyte-cumulus complex culture medium from women undergoing in vitro fertilization: association with oocyte maturity and fertilization. Fertil Steril. 2001;76:98–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Van Blerkom .

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    Which follicular fluid components that have been related to competence may be the most informative and easily quantifiable for the typical clinical IVF program?

  2. 2.

    What are the apparent physiological consequences of variability in the expression of angiogenic factors at the transcriptional and translation levels and (i) how might they be detected noninvasively and (ii) be related to oocyte and preimplantation embryo developmental competence?

  3. 3.

    What are the logistical issues that are likely to be associated with the collection and preparation of individual fluid aspirates during the oocyte retrieval phase of an IVF cycle?

  4. 4.

    At present, what highly compelling evidence related to outcome exists that would warrant follicular fluid analysis in routine IVF practice for selective purposes?

  5. 5.

    Going forward in considering the biochemical and molecular complexity of follicular fluid, what other classes of components, such as lipids or bioactive peptides, might be useful to investigate as potential competence biomarkers and why?

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Blerkom, J. (2019). Molecular Mining of Follicular Fluid for Reliable Biomarkers of Human Oocyte and Embryo Developmental Competence. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) In Vitro Fertilization. Springer, Cham. https://doi.org/10.1007/978-3-319-43011-9_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43011-9_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43010-2

  • Online ISBN: 978-3-319-43011-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics