Skip to main content

Manufacturing Through Ages

  • Chapter
  • First Online:
A Brief History of Mechanical Engineering

Abstract

Manufacturing is integrally linked with the development of civilization. Some of the important manufacturing processes are machining, metal forming, casting, joining, powder metallurgy, and 3D printing. Power-driven machines for manufacturing became common since the first Industrial Revolution. In the nineteenth century, attempts were made to understand the physics of manufacturing processes. The predictive formulae for some of the processes were also developed. In the twentieth century, particularly in the second half of it, various advanced manufacturing processes were developed; notable among them are the laser-based manufacturing processes. In the twenty-first century, 3D printing technology has gained importance and is being further developed through continued research efforts. In the near future, mechanical engineers are expected to contribute a lot in developing green and sustainable manufacturing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkins, A. G. (2003). Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. International Journal of Mechanical Science, 43, 373–396.

    Article  Google Scholar 

  • Astakhov, V. P. (2004). The assessment of cutting tool wear. International Journal of Machine Tools and Manufacture, 44, 637–647.

    Article  Google Scholar 

  • Astakhov, V. P. (2006). An opening historical note. International Journal of Machining and Machinability of Materials, 1, 3–11.

    Google Scholar 

  • Bayer, A. M., Becherer, B. A., & Vasco, T. (1989). High speed tool steels, ASM Handbook (Vol. 16: Machining, pp. 51–59). ASM Handbook Committee.

    Google Scholar 

  • Benjamin, T., Count of Rumford. (1798). An Inquiry Concerning the Source of the Heat Which is Excited by Friction, Phil Trans Royal Soc (Lon), 18, 278–287. Also in collected works of Count Rumford, Essays-Political, Economical, and Philosophical, 1st Edition, David West, Boston, Vol. 2, 469–496 (1799).

    Google Scholar 

  • Boothroyd, G. (1961). Photographic technique for the determination of metal cutting temperature. British Journal of Applied Physics, 12, 238–242.

    Article  Google Scholar 

  • Briks, A. A. (1896). Metal cutting. Kyibashev: Publishing House.

    Google Scholar 

  • Brooks, J. F. (1905). Photographs of Cutting Tools in Action. In Proceedings of Institution of Mechanical Engineering, (London) Parts 1 and 2, p. 365.

    Google Scholar 

  • Chryssolouris, G. (1991). Laser machining: Theory and preactice. New York: Springer.

    Book  Google Scholar 

  • Clough, R.W. (1960). The finite element in plane stress analysis. In: Proceedings of 2nd A. S. C. E. Conference on Electronic Computation, Pittsburgh, PA.

    Google Scholar 

  • Corry, A. K. (1990). Engineering, methods of manufacture and production. In I. McNeil (Ed.), An encyclopedia of the history of technology (pp. 388–427). London: Routledge.

    Google Scholar 

  • Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society, 49, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Darling, A. S. (1990). Non-ferrous metals. In I. McNeil (Ed.), An Encyclopedia of the History of Technology (pp. 1–40). London: Routledge.

    Google Scholar 

  • Dawihl, W. (1940). Investigation of the processes in the wear of cemented carbide tools, (in German) Zeitschrift Technische Physik, 21 (12), 337–345.

    Google Scholar 

  • Deb, S. R. (1994). Robotics technology and flexible automation. New Delhi: Tata McGraw-Hill Publishing Company.

    Google Scholar 

  • Drucker, D. (1949). An analysis of the mechanics of metal cutting. Journal of Applied Physics, 20, 1013–1021.

    Article  Google Scholar 

  • Dubey, A. K., & Yadava, V. (2008). Laser beam machining—a review. International Journal of Machine Tools and Manufacture, 48, 609–628.

    Article  Google Scholar 

  • Dutta, N. C. (2010). Rapid prototyping—an introduction. In Proceedings of 25th National Convention of Production Engineers & National Seminar on Recent Development of Manufacturing Technology, May 8–9, 2010, Agartala, India.

    Google Scholar 

  • Ernst, H., & Merchant, M. E. (1941). Chip formation, friction and finish. Cincinnati: Cincinnati milling machine Company.

    Google Scholar 

  • Engel, U., & Eckstein, R. (2002). Microforming from basic research to its realization. Journal of Material Processing Technology, 125–126, 35–44.

    Article  Google Scholar 

  • ESC Report. (1991). History of adhesives, BSA Educational Services Committee, 1–4.

    Google Scholar 

  • Geiger, M., Kleiner, M., Eckstein, R., Tiesler, N., & Engel, U. (2001). Microforming. CIRP Annals—Manufacturing Technology, 50, 445–462.

    Google Scholar 

  • Green, A. P. (1951). The compression of a ductile material between smooth dies. Philosophical Magazine, 42, 900–918.

    Article  Google Scholar 

  • Green-Spikesley, E. (1979). Investment casting. Materials in Engineering Applications, 1, 328–334.

    Article  Google Scholar 

  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London, A 193, 281–297.

    Google Scholar 

  • Hill, R. (1950). The mathematical theory of plasticity. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Hill, R. (1979). Theoretical plasticity of textured aggregates. Mathematical Proceedings of the Cambridge Philosophical Society, 85, 179–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, R. (1993). A user-friendly theory of orthotropic plasticity in sheet metals. International Journal of Mechanical Sciences, 15, 19–25.

    Article  MATH  Google Scholar 

  • Hirota, K. (2007). Fabrication of micro-billet by sheet extrusion. Journal of Materials Processing Technology, 191, 283–287.

    Article  Google Scholar 

  • Houldcroft, P. T. (1986). Welding process developments and future trends. Materials and Design, 7, 162–169.

    Article  Google Scholar 

  • Huang, Y., Leu, M.C., Mazumder, J., & Donmez, A. (2015). Additive manufacturing: Current status, future potential, gaps and needs, and recommendations. ASME Journal of Manufacturing Science and Engineering, 137, 014001 (10 pages).

    Google Scholar 

  • Iwato, K., & Ueda, K. (1976). The significance of the dynamic crack behavior in chip formation. Annals of the CIRP, 25, 65–70.

    Google Scholar 

  • Jadoun, R. S. (2014). Ultrasonic micromachining (USMM). In V. K. Jain (Ed.), Introduction to Micromachining (2nd ed.). New Delhi: Narosa Publishing House.

    Google Scholar 

  • Jaeger, J. C. (1942). Moving sources of heat and the temperature at sliding contacts. Proceedings of Royal Society of New South Wales, 76, 203–224.

    MathSciNet  Google Scholar 

  • Jain, V. K., Sidpara, A., Balasubramaniam, R., Lodha, G. S., Dhamgaye, V. P., & Shukla, R. (2014a). Micromanufacturing: A review—Part 1. Proceedings of Institution of Mechanical Engineering, Part B., Journal of Engineering Manufacture, 228, 973–994.

    Google Scholar 

  • Jain, V. K., Dixit, U. S., Paul, C. P., & Kumar, A. (2014b). Micromanufacturing: A review—Part 2. Proceedings of Institution of Mechanical Engineering, Part B., Journal of Engineering Manufacture, 228, 995–1014.

    Google Scholar 

  • Joule, J. P. (1850). On the mechanical equivalent of heat. Philosophical Transactions of the Royal Society of London, 61–81 (1850).

    Google Scholar 

  • Kick, F. (1901). Zur folge der wirkungsweise des taylor− white and der bohler− rapid− stahles. Baumaterialkunde, 6, 227.

    Google Scholar 

  • Kitamura, K. (1983). Materials processing by high powered laser, Japan Welding Engineering Society, Technical report JWESTP-8302., pp. 359–371.

    Google Scholar 

  • Kronenberg, M. (1954). Discussion to paper Loewen, EG and Shaw, MC, On the analysis of cutting tool temperatures. Transactions of ASME, 71, 217–231.

    Google Scholar 

  • Komanduri, R. (1993). Machining and grinding: A historical review of the classical papers. Applied Mechanics Review, 46, 80–132.

    Article  Google Scholar 

  • Komanduri, R. (2006). In memoriam: M. Eugene Merchant. ASME Journal of Manufacturing Science & Engineering, 128, 1034–1036.

    Article  Google Scholar 

  • Koester, C. J., & Snitzer, E. (1964). Amplification in a fiber laser. Applied Optics, 3(10), 1182–1186.

    Article  Google Scholar 

  • Lee, E. H., & Shaffer, B. W. (1951). The theory of plasticity applied to problems of machining. ASME Journal of Applied Mechanics, 18, 405–413.

    Google Scholar 

  • Maiuri, T. J. (2009). Hob tool life technology update. Gear Technology, March/April 2009.

    Google Scholar 

  • Mallock, A. (1881). The Action of Cutting Tools. Proceedings of the Royal Society of London, 33, 127–139.

    Article  Google Scholar 

  • Martin, R. (1979). Automated adjusting in precision engineering (German patent: Automatisiertesjustieren in der feinwerktechnik). DeutschesPatentamt, Offenlegungsschrift, 29(18), 100.

    Google Scholar 

  • McNeil, I. (1990). Introduction: Basic tools, devices and mechanisms. In I. McNeil (Ed.), An Encyclopedia of the History of Technology (pp. 1–40). London: Routledge.

    Chapter  Google Scholar 

  • Mehta, N. K. (1996). Machine tool design and numerical control (2nd ed.). New Delhi: Tata McGraw-Hill Publishing Company.

    Google Scholar 

  • Merchant, M. E. (1944). Basic mechanics of the metal cutting process. Transactions of ASME, 66, A65–A71.

    Google Scholar 

  • Merchant, M. E. (1945a). Mechanics of the metal cutting process I: Orthogonal cutting and the type 2 chip. Journal of Applied Physics, 16, 267–275.

    Article  Google Scholar 

  • Merchant, M. E. (1945b). Mechanics of the metal cutting process II: Plasticity conditions in orthogonal cutting. Journal of Applied Physics, 16, 318–324.

    Article  Google Scholar 

  • Newbury, B. D., & Notis, M. R. (2004). The history and evolution of wiredrawing techniques. JOM Journal of the Minerals Metals and Materials Society, 56, 33–37.

    Article  Google Scholar 

  • Orowan, E. (1943). The calculation of roll pressure in hot and cold flat rolling. Proceedings of the Institution of Mechanical Engineers, 150, 140–167.

    Article  Google Scholar 

  • Palmer, W. B., & Oxley, P. L. B. (1959). Mechanics of metal cutting. Proceedings of the Institution of Mechanical Engineers, 173, 623–654.

    Article  Google Scholar 

  • Piispanen, V. (1937). Lastunmuodostumisen teoriaa. Teknillinen Aikakauslehti, 27, 315–322.

    Google Scholar 

  • Prager, W., & Hodge, P. G. (1951). Theory of perfectly plastic solids. New York: Wiley.

    Google Scholar 

  • Quiza, R., López-Armas, O., & Davim, J. P. (2012). Hybrid modeling and optimization of manufacturing: Combining artificial intelligence and finite element method. London: Springer.

    Book  Google Scholar 

  • Rangwala, S. S., & Dornfeld, D. (1989). Learning and optimization of machining operations using computing abilities of neural networks. IEEE Transactions on Systems, Man and Cybernetics, 19, 299–314.

    Article  Google Scholar 

  • Rapier, A. C. (1954). A theoretical investigation of the temperature distribution in the metal cutting process. British Journal of Applied Physics, 5, 400–405.

    Article  Google Scholar 

  • Reuleaux, F. (1900). About the Taylor rule white tool steel. Society for the promotion of trade diligence in Prussia. Sitzungsberichete, 79(1), 179–220.

    Google Scholar 

  • Risbood, K. A., Dixit, U. S., & Sahasrabudhe, A. D. (2003). Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. Journal of Materials Processing Technology, 132(1), 203–214.

    Article  Google Scholar 

  • Robert, V. B. (1989). Lincoln and the tools of war. Chicago: University of Illinois Press.

    Google Scholar 

  • Roberts, W. L. (1978). Cold rolling of steel. New York: Marcel Dekker.

    Google Scholar 

  • Roe, J. W. (1916). English and American tool builders. New Haven, Connecticut: Yale University Press, LCCN 16011753. Reprinted by McGraw-Hill, New York and London, 1926 (LCCN 27-24075); and by Lindsay Publications, Inc., Bradley, Illinois, (ISBN 978-0-917914-73-7).

    Google Scholar 

  • Rolt, L. T. C. (1965). Tools for the job: A short history of machine tools. London: B.T. Batsford Ltd.

    Google Scholar 

  • Sachs, G. (1927). Zur Theorie des Ziehvorganges. Zeitschrift für angewandte Mathematik und Mechanik, 7, 235–236.

    Article  MATH  Google Scholar 

  • Saha, S. K. (2008). Introduction to robotics. New Delhi: Tata McGraw Hill Education.

    Google Scholar 

  • Shaw, M. C., Cook, N. H., & Smith, P. A. (1952). The mechanics of three-dimensional cutting operations. Transactions of ASME, 74, 1055–1064.

    Google Scholar 

  • Shaw, M. C. (1954). Metal cutting principles (3rd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Shaw, M. C. (1984). Metal cutting principles. Oxford: Oxford Science Publications.

    Google Scholar 

  • Shaw, M. C., & Finnie, I. (1955). The shear stress in metal cutting. Transactions of ASME, 77, 115–125.

    Google Scholar 

  • Sheppard, T. (2013). Extrusion of alumnium alloys. London: Springer.

    Google Scholar 

  • Sidjanin, L., & Kovac, P. (1997). Fracture mechanisms in chip formation processes. Materials Science and Technology, 13, 439–444.

    Google Scholar 

  • Siebel, E. (1923). Untersuchungen uber bildsame Formanderung unter besonderer Berucksichtigung des Schmiedens. Maschinenbau/Betrieb., 9, 307–312. (in German).

    Google Scholar 

  • Stabler, G. V. (1951). The fundamental geometry of cutting tools. Proceedings of Mechanical Engineering, 165, 14–21.

    Article  Google Scholar 

  • Snitzer, E. (1961). Optial MASER action of Nd+3 in a barium crown glass. Physical Review Letters, 7(12), 444–446.

    Article  Google Scholar 

  • Taylor, F. W. (1907). On the art of cutting metals. Transactions of ASME, 28, 31–248.

    Google Scholar 

  • Time, I. (1870). Resistance of metals and wood to cutting (in Russian). St. Petersburg, Russia: Dermacow Press House.

    Google Scholar 

  • Thomsen, E. G., Yang, C. T., & Bierbower, T. B. (1959). **An experimental investigation of the mechanics of plastic deformation of metals, University of California (Berkeley). Publ. Eng., 5, 89–144.

    Google Scholar 

  • Transistor Museum (2009). History of transistors (Vol. 1). A Publication of the Transistor Museum.

    Google Scholar 

  • Trent, E. M. (1952). Some factors affecting wear on cemented carbide tools. Proceedings of the Institution of Mechanical Engineers, 166, 64–74.

    Article  Google Scholar 

  • Trent, E., & Wright, P. (2000). Metal cutting (4th ed.). New Delhi: Butterworth Heinemann.

    Google Scholar 

  • Tresca, H. (1873). Memoir on the planning of metals, (in French). Bulletin de la Société d’Encouragement pour l’Industrie Nationale, 15, 585–685.

    Google Scholar 

  • Trigger, K. J., & Chao, B. T. (1956). The mechanism of crater wear of cemented carbide tools. Transactions on ASME, 78, 1119–1126.

    Google Scholar 

  • Turner, M. J., Clough, R. W., Martin, H. C., & Topp, L. J. (1956). Stiffness and deflection analysis of complex structures. Journal of Aerosol Science, 23, 805–823.

    Article  MATH  Google Scholar 

  • Vollertsen, F., & Sakkiettibutra, J. (2010). Different types of laser used as a forming tool, LANE 2010. Physics Procedia, 5, 193–203.

    Article  Google Scholar 

  • von Karman, Th. (1925). Beitrag zur Theorie des Walzvorges. Zeitschrift für angewandte Mathematik und Mechanik, 5, 139–141.

    MATH  Google Scholar 

  • Wohlers Associates Inc. (2014). Wohlers report 2014. History of additive manufacturing. Fort Collins: Wholers Associates.

    Google Scholar 

  • Zorev, N. N. (Ed.). (1966). Metal cutting mechanics. Oxford: Pergamon Press.

    Google Scholar 

  • Zvorykin, K. A. (1896). On the force and energy needed to separate the chip from the workpiece (in Russian). Tekhicheskii Sbornik i Vestnic Promyslinosty, 123, 57–96.

    Google Scholar 

  • Retrieved November 19, 2015, from https://www.asme.org/engineering-topics/articles/manufacturing-processing/david-wilkinson.

  • Retrieved November 19, 2015, from http://www.britannica.com/biography/Frederick-Webster-Howe.

  • Retrieved November 29, 2015, from http://www.cmsna.com/blog/2013/01/history-of-cnc-machining-how-the-cnc-concept-was-born/.

  • Retrieved December 20, 2015, from http://www.coord3-cmm.com/50-years-of-coordinate-measuring-machine-industry-developments-and-history/.

  • Retrieved December 30, 2015, from http://literacy.kent.edu/eureka/EDR/5/Middletown/Industrial%20Fields/History%20of%20Welding.pdf.

  • Retrieved November 29, 2015, from http://www.ronsongears.com.au/a-brief-history-of-gears.php.

  • Retrieved November 9, 2015, from http://www.turningtools.co.uk/history2/history-turning2.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Shanker Dixit .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dixit, U.S., Hazarika, M., Davim, J.P. (2017). Manufacturing Through Ages. In: A Brief History of Mechanical Engineering. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-42916-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42916-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42914-4

  • Online ISBN: 978-3-319-42916-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics