Skip to main content

Magmatism and Geodynamics in the Tyrrhenian Sea Region

  • Chapter
  • First Online:
Cenozoic Volcanism in the Tyrrhenian Sea Region

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

The Tyrrhenian Sea region is the site of widespread Cenozoic igneous activity that shows extreme compositional variations in space and time, highlighting complex evolution history for magmas and their sources. Based on ages and volcanological-petrological-geochemical characteristics of mafic rocks, several magmatic provinces are distinguished, which are related to compositionally distinct sectors of the upper mantle beneath the Tyrrhenian Sea region. Rocks with MORB- and OIB-type geochemical signatures (i.e. low LILE/HFSE ratios, and EM1, FOZO, DMM isotopic compositions) originated from mantle rocks that were not affected by young subduction events. FOZO- and DMM-type magmas are best represented by the Sicily volcanics and may derive from an ascending plume head or from a metasomatised lithosphere-asthenosphere permeated by deep asthenospheric fluids. EM1-type rocks crop out in Sardinia and are unique in Europe. They could derive either from a mantle plume or from an ancient metasomatised lithosphere. The petrogenesis of arc-type magmas is related to contamination of various mantle rocks (MORB to OIB-type) by subducted upper crustal components. Four main types of subduction-related mantle metasomatic events are recognised in the Tyrrhenian Sea area, with a role of upper crustal components (sediments) increasing from Sardinia and the southern Tyrrhenian Sea to Central Italy. Metasomatism beneath Tuscany was Alpine in age, whereas mantle contamination beneath the Roman Province was provided by Miocene-Quaternary subduction of the Adriatic continental plate beneath the Northern Apennines. In contrast, subduction of the Ionian oceanic plate plus some sediments generated metasomatism and magmatism in Campania and the central-southern Tyrrhenian Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagna K, Peccerillo A, Martin S, Donati D (2010) Tertiary to present evolution of orogenic magmatism in Italy. J Virtual Explorer 36, paper 18 doi: 10.3809/jvirtex.2010.00233

  • Alvarez W (1972) Rotation of the Corsica-Sardinia microplate. Nature 235:103–105

    Google Scholar 

  • Argnani A, Savelli C (1999) Cenozoic volcanism and tectonics in the southern Tyrrhenian Sea: space-time distribution and geodynamic significance. Geodynamics 27:409–432

    Article  Google Scholar 

  • Ayuso RA, De Vivo B, Rolandi G, Seal RR II, Paone A (1998) Geochemical and isotopic (Nd–Pb–Sr–O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J Volcanol Geoth Res 82:53–78

    Article  Google Scholar 

  • Barchi M (2010) The Neogene-Quaternary evolution of the Northern Apennines: crustal structure, style of deformation and seismicity. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) J Virtual Explorer 36, paper 11 doi: 10.3809/jvirtex.2010.00220

  • Barchi M, Landuzzi A, Minelli G, Pialli G (2001) Outhern Northern Apennines. In: Vai GB, Martini PI (eds) Anatomy of an Orogen. The Apennines and the adjacent Mediterranean basins. Kluwer, Dordrecht, pp 215–254

    Chapter  Google Scholar 

  • Beccaluva L, Di Girolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman volcanic province, Italy. Lithos 26:191–221

    Article  Google Scholar 

  • Bell K, Castorina F, Lavecchia G, Rosatelli G, Stoppa F (2004) Is there a mantle plume below Italy? EOS 85:541–547

    Article  Google Scholar 

  • Bell K, Lavecchia G, Rosatelli G (2013) Cenozoic Italian magmatism—Isotope constraints for possible plume-related activity. J South Am Earth Sci 41:22–40

    Article  Google Scholar 

  • Benoit MH, Torpey M, Liszewski K, Levin V, Park J (2011) P and S wave upper mantle seismic velocity structure beneath the northern Apennines: new evidence for the end of subduction. Geochem Geophys Geosyst 12:Q06004. doi:10.1029/2010GC003428

    Article  Google Scholar 

  • Boccaletti M, Guazzone G (1974) Remnant arcs and marginal basins in the Cainozoic development of the Mediterranean. Nature 252:18–21

    Article  Google Scholar 

  • Boccaletti M, Elter P, Guazzone G (1971) Plate tectonics model for the development of Western Alps and Northern Apennines. Nature 234:108–111

    Article  Google Scholar 

  • Boccaletti M, Coli M, Decandia FA, Giannini E, Lazzarotto A (1980) Evoluzione dell’Appennino settentrionale secondo un nuovo modello strutturale. Mem Soc Geol It 21:31–49

    Google Scholar 

  • Boccaletti M, Nicolich R, Tortorici L (1984) The Calabrian arc and the Ionian Sea in the dynamic evolution of the central Mediterranean. Mar Geol 55:219–245

    Article  Google Scholar 

  • Boccaletti M, Cello G, Tortorici L (1987) Transtensional tectonics in the Sicily channel. J Struct Geol 9:869–876

    Article  Google Scholar 

  • Boccaletti M, Calamita F, Deiana G, Gelati R, Massari F, Moratti G, Ricci Lucchi F (1990a) Migrating foredeep-thrust belt systems in the northern Apennines and southern Alps. Palaeogeogr Palaeocl 77:3–14

    Article  Google Scholar 

  • Boccaletti M, Ciaranfi N, Cosentino D, Deiana G, Gelati R, Lentini F, Massari F, Moratti G, Pescatore T, Ricci Lucchi F, Tortorici L (1990b) Palinspastic restoration and paleogeographic reconstruction of the peri-Tyrrhenian area during the Neogene. Palaeogeogr Palaeocl 77:41–50

    Article  Google Scholar 

  • Boccaletti M, Nicolich R, Tortorici L (1990c) New data and hypothesis on the development of the Tyrrhenian Basin. Palaeogeogr Palaeocl 77:15–40

    Google Scholar 

  • Brunet C, MoniĂ© P, Jolivet L, Cadet JP (2000) Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 321:127–155

    Google Scholar 

  • Cadoux A, Blichert-Toft J, Pinti DL, Albarede F (2007) A unique lower mantle source for Southern Italy volcanics. Earth Planet Sci Lett 259:227–238

    Article  Google Scholar 

  • Carmignani L, Oggiano G, Barca S, Conti P, Salvadori I, Eltrudis A, Funedda A, Pasci S (2001) Geologia della Sardegna. Note illustrative della Carta Geologica in scala 1:200,000. Mem Descr Carta Geol It 60:283 pp

    Google Scholar 

  • Carminati E, Lustrino M, Cuffaro M, Doglioni C (2010) Tectonics, magmatism and geodynamics of Italy: what we know and what we imagine. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) J virtual explorer 36, paper 9 doi: 10.3809/jvirtex.2010.00226

  • Carminati E, Lustrino M, Doglioni C (2012) Geodynamic evolution of the central and western Mediterranean: tectonic vs. igneous constraints. Tectonophysics 579:173–192

    Article  Google Scholar 

  • Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelevic D, Venturelli G (2009) Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107:68–92

    Article  Google Scholar 

  • Corti G, Cuffaro M, Doglioni C, Innocenti F, Manetti P (2006) Coexisting geodynamic processes in the Sicily channel. In: Dilek Y and Pavlides S (eds) Postcollisional tectonics and magmatism in the Mediterranean region and Asia, Geol Soc Am Spec Paper 409:83–96

    Google Scholar 

  • Dal Piaz GV (2010) The Italian Alps: a journey across two centuries of Alpine geology. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) J virtual explorer 36, paper 8 doi: 10.3809/jvirtex.2010.00234

  • Di Stefano R, Bianchi I, Ciaccio MG, Carrara C, Kissling E (2011) Three-dimensional Moho topography in Italy: new constraints from receiver functions and controlled source seismology. Geochem Geophys Geosyst 12:Q09006. doi:10.1029/2011GC003649

    Google Scholar 

  • Doglioni C, Carminati E (2012) Alps vs. Apennines: the paradigm of a tectonically asymmetric Earth. Earth Sci Rev 112:67–96

    Article  Google Scholar 

  • Doglioni C, Mongelli F, Pialli G (1998) Boudinage of the Alpine belt in the Apenninic back-arc. Mem Soc Geol It 52:457–468

    Google Scholar 

  • Doglioni C, Harabaglia P, Merlini S, Mongelli F, Peccerillo A, Piromallo C (1999) Orogens and slabs vs. their direction of subduction. Earth Sci Rev 45:167–208

    Article  Google Scholar 

  • Faccenna C, Funiciello F, Civetta L, D’Antonio M, Moroni M, Piromallo C (2007) Slab disruption, mantle circulation, and the opening of the Tyrrhenian basins. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic volcanism in the Mediterranean area, Geol Soc Am Spec Paper 418:153–169

    Google Scholar 

  • Faccenna C, Becker TW, Lallemand S, Lagabrielle Y, Funiciello F, Piromallo C (2010) Subduction-triggered magmatic pulses: a new class of plumes? Earth Planet Sci Lett 299:54–68

    Article  Google Scholar 

  • Finetti IR, Boccaletti M, Bonini M, Del Ben A, Geletti R, Pipan M, Sani F (2001) Crustal section based on CROP seismic data across the North Tyrrhenian-Northern Apennines-Adriatic Sea. Tectonophysics 43:135–163

    Article  Google Scholar 

  • Gao Y, Hou Z, Kamber BS, Wei R, Meng X, Zhao R (2007) Lamproitic rocks from a continental collision zone: evidence for recycling of subducted Tethyan oceanic sediments in the mantle beneath Southern Tibet. J Petrol 48:729–752

    Article  Google Scholar 

  • Gasperini D, Blichert Toft J, Bosch D, Del Moro A, Macera P, AlbarĂ©de F (2002) Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics. J Geophys Res 107(B12):2367. doi:10.1029/2001JB000418

    Article  Google Scholar 

  • Giacomuzzi G, Civalleri M, De Gori P, Chiarabba C (2012) A 3D Vs model of the upper mantle beneath Italy: insight on the geodynamics of central Mediterranean. Earth Planet Sci Lett 335–336:105–120

    Article  Google Scholar 

  • Grassi D, Schmidt MW, Gunther D (2012) Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet Sci Lett 327–328:84–96

    Article  Google Scholar 

  • Gueguen E, Doglioni C, Fernandez M (1998) On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 298:259–269

    Article  Google Scholar 

  • Gvirtzman Z, Nur A (1999) The formation of Mount Etna as the consequence of slab rollback. Nature 401:782–785

    Article  Google Scholar 

  • Hawkesworth CJ, Vollmer R (1979) Crustal contamination vs. enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics. Contrib Min Pet 69:151–165

    Article  Google Scholar 

  • Hermann J, Rubatto D (2009) Accessory phase control on trace element signature of sediment melt in subduction zones. Chem Geol 265:512–526

    Article  Google Scholar 

  • Keller JVA, Minelli G, Pialli G (1994) Anatomy of late orogenic extension: the northern Apennines case. Tectonophysics 238:275–294

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signatures of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Article  Google Scholar 

  • Lavecchia G, Stoppa F (1990) The Tyrrhenian zone: a case of lithosphere extension control of intra-continental magmatism. Earth Planet Sci Lett 99:336–350

    Article  Google Scholar 

  • Lavecchia G, Stoppa F (1996) The tectonic significance of Italian magmatism: an alternative view to the popular interpretation. Terra Nova 8:435–446

    Article  Google Scholar 

  • Locardi E (1988) The origin of the Apenninic arc. Tectonophysics 146:105–123

    Article  Google Scholar 

  • Locardi E, Nicholich R (1988) Geodinamica del Tirreno e dell’Appennino centro-meridionale: la nuova carta della Moho. Mem Soc Geol It 41:121–140

    Google Scholar 

  • Lustrino M (2000) Volcanic activity during the Neogene to present evolution of the western Mediterranean area: a review. Ofioliti 25:87–101

    Google Scholar 

  • Lustrino M, Fedele L, Melluso L, Morra V, Ronga F, Geldmacher J, Duggen S, Agostini S, Cucciniello C, Franciosi L, Meisel T (2013) Origin and evolution of Cenozoic magmatism of Sardinia (Italy). A combined isotopic (Sr–Nd–Pb–O–Hf–Os) and petrological view. Lithos 180:138–158

    Article  Google Scholar 

  • MalusĂ  MG, Faccenna C, Baldwin SL, Fitzgerald PG, Rossetti F, Balestrieri ML, Danisik M, Ellero A, Ottria G, Piromallo C (2015) Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria- Europe plate boundary (Western Alps, Calabria, Corsica). Geochem Geophys Geosyst 16 doi:10.1002/2015GC005767

  • MalusĂ  MG, Danisik M, Kuhlemann J (2016) Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica-Sardinia by low-temperature thermochronometry. Gondwana Res 31:135–149

    Article  Google Scholar 

  • Mantovani E, Babbucci D, Tamburelli C, Viti M (2009) A review on the driving mechanism of the Tyrrhenian-Apennines system: implications for the present seismotectonic setting in the Central-Northern Apennines. Tectonophysics 476:22–40

    Article  Google Scholar 

  • Martelli M, Nuccio PM, Stuart FM, Di Liberto V, Ellam RM (2008) Constraints on mantle source and interactions from He-Sr isotope variation in Italian Plio-Quaternary volcanism. Geochem Geophys Geosyst 9:Q02001. doi:10.1029/2007GC001730

    Article  Google Scholar 

  • Mele G, Sandvol E (2003) Deep crustal roots beneath the northern Apennines inferred from teleseismic receiver functions. Earth Planet Sci Lett 211:69–78

    Article  Google Scholar 

  • Mele G, Sandvol E, Cavinato GP (2006) Evidence of crustal thickening beneath the central Apennines (Italy) from teleseismic receiver functions. Earth Planet Sci Lett 249:425–435

    Article  Google Scholar 

  • Mueller S, Panza GF (1986) Evidence of a deep-reaching lithospheric root under the Alpine Arc. In: Wezel FC (ed), The origin of arcs, vol 21. Elsevier, pp 93–113

    Google Scholar 

  • Panza GF, Pontevivo A, Chimera G, Raykova R, Aoudia A (2003) The lithosphere-asthenosphere: Italy and surroundings. Episodes 26:169–174

    Google Scholar 

  • Peccerillo A (1985) Roman Comagmatic Province (Central Italy): evidence for subduction-related magma genesis. Geology 13:103–106

    Article  Google Scholar 

  • Peccerillo A (1998) Relationships between ultrapotassic and carbonate-rich volcanic rocks in central Italy: petrogenetic implications and geodynamic significance. Lithos 43:267–279

    Article  Google Scholar 

  • Peccerillo A (1999) Multiple mantle metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology 27:315–318

    Article  Google Scholar 

  • Peccerillo A (2001) Geochemical similarities between Vesuvius, Phlegraean fields and Stromboli volcanoes: petrogenetic, geodynamic and volcanological implications. Min Pet 73:93–105

    Article  Google Scholar 

  • Peccerillo A (2004) Carbonate-rich pyroclastic rocks from central Apennines: carbonatites or carbonated rocks? A commentary. Per Min 73:165–175

    Google Scholar 

  • Peccerillo A, Frezzotti ML (2015) Magmatism, mantle evolution and geodynamics at the converging plate margins of Italy. J Geol Soc Lond 172:407–427

    Article  Google Scholar 

  • Peccerillo A, Lustrino M (2005) Compositional variations of the Plio-quaternary magmatism in the circum-Tyrrhenian area: deep- vs. shallow-mantle processes. In: Foulger GR, Nathland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geol Soc Am Spec Publ 388:421–434

    Google Scholar 

  • Peccerillo A, Martinotti G (2006) The Western Mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova 18:109–117

    Article  Google Scholar 

  • Peccerillo A, Panza GF (1999) Upper mantle domains beneath central-southern Italy: petrological, geochemical and geophysical constraints. Pure Appl Geophys 156:421–443

    Article  Google Scholar 

  • Peccerillo A, Poli G, Serri G (1988) Petrogenesis of orenditic and kamafugitic rocks from Central Italy. Can Min 26:45–65

    Google Scholar 

  • Pichavant M, Scaillet B, Pommier A, Iacono-Marziano G, Cioni R (2014) Nature and evolution of primitive Vesuvius magmas: an experimental study. J Pet 55:2281–2309

    Article  Google Scholar 

  • Piromallo C, Gasperini D, Macera P, Faccenna C (2008) A late cretaceous contamination episode of the European-Mediterranean mantle. Earth Planet Sci Lett 268:15–27

    Article  Google Scholar 

  • Poli G, Peccerillo A (2016) The upper Miocene magmatism of the Elba Island: compositional characteristics, petrogenesis and implications for the origin of the Tuscany Magmatic Province. Min Pet (in press)

    Google Scholar 

  • Prelevic D, Foley SF, Romer R, Conticelli S (2008) Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochim Cosmochim Acta 72:2125–2156

    Article  Google Scholar 

  • Rosenbaum G, Lister GS (2004a) Neogene and quaternary rollback evolution of the Tyrrhenian Sea, the Apennines and the Sicilian Maghrebides. Tectonics, 23, TC1013 doi:10.1029/2003TC001518

  • Rosenbaum G, Lister GS (2004b) Formation of arcuate orogenic belts in the western Mediterranean region. In: Sussman AJ, Weil AB (eds) Orogenic curvature: integrating paleomagnetic and structural analyses. Geol Soc Am Spec Paper 383:41–56

    Google Scholar 

  • Rosenbaum G, Piana Agostinetti N (2015) Crustal and upper mantle responses to lithospheric segmentation in the northern Apennines. Tectonics 34 doi:10.1002/2013TC003498

  • Sano Y, Wakita H, Italiano F, Nuccio M (1989) Helium isotopes and tectonics in Italy. Geophys Res Lett 16:511–514

    Article  Google Scholar 

  • Sartori R (2003) The Thyrrhenian backarc basin and subduction of the Ionian lithosphere. Episodes 26:217–221

    Google Scholar 

  • Savelli C, Gasparotto G (1994) Calc-alkaline magmatism and rifting of the deep-water volcano of Marsili (Aeolian back-arc, Tyrrhenian Sea). Mar Geol 119:137–157

    Article  Google Scholar 

  • Serri G (1990) Neogene-Quaternary magmatism of the Tyrrhenian region: characterization of the magma sources and geodynamic implications. Mem Geol Soc It 41:219–242

    Google Scholar 

  • Serri G, Innocenti F, Manetti P (1993) Geochemical and petrological evidence of the subduction of delaminated adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics 223:117–147

    Article  Google Scholar 

  • Stampfli GM, Borel G (2004) The TRANSMED Transects in space and time: Constraints on the paleotectonic evolution of the Mediterranean Domain. In: Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA (eds) (2004) The TRANSMED Atlas (with CD-ROM).  The Mediterranean region from crust to mantle. Springer, p 53–80

    Google Scholar 

  •  Tommasini S, Avanzinelli R, Conticelli S (2011) The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth Planet Sci Lett 301:469–478

    Article  Google Scholar 

  • Turco E, Zuppetta A (1998) A kinematic model for the Plio-Quaternary evolution of the Tyrrhenian-Apenninic system: implications for rifting processes and volcanism. J Volcanol Geoth Res 82:1–18

    Article  Google Scholar 

  • Turco E, Macchiavelli C, Mazzoli S, Schettino A, Pierantoni PP (2012) Kinematic evolution of Alpine Corsica in the framework of Mediterranean mountain belts. Tectonophysics 579:193–206

    Article  Google Scholar 

  • Viti M, Mantovani E, Babbucci D, Tamburelli C (2011) Plate kinematics and geodynamics in the Central Mediterranean. J Geodyn 51:190–204

    Article  Google Scholar 

  • Vollmer R (1976) Rb–Sr and U–Th–Pb systematics of alkaline rocks: the alkaline rocks from Italy. Geochim Cosmochim Acta 40:283–295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Peccerillo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Peccerillo, A. (2017). Magmatism and Geodynamics in the Tyrrhenian Sea Region. In: Cenozoic Volcanism in the Tyrrhenian Sea Region. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/978-3-319-42491-0_13

Download citation

Publish with us

Policies and ethics