Skip to main content

Part of the book series: Practical Guides in Radiation Oncology ((PGRO))

  • 1639 Accesses

Abstract

Lower GI cancers present a particular problem for multidisciplinary care. Concurrent chemoradiotherapy is the standard of care, but with it comes a host of treatment-related toxicities. For rectal cancer, preoperative chemoradiation with 5-fluorouracil- (5-FU)-based treatment followed by total mesorectal excision results in the best local control. For anal squamous cell cancer (SCC), definitive chemoradiation with two sensitizing agents has allowed curative treatment without the need for surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hong TS, et al. NRG oncology radiation therapy oncology group 0822: a phase 2 study of preoperative Chemoradiation therapy using intensity modulated radiation therapy in combination with Capecitabine and Oxaliplatin for patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2015;93(1):29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chopra S, et al. Predictors of grade 3 or higher late bowel toxicity in patients undergoing pelvic radiation for cervical cancer: results from a prospective study. Int J Radiat Oncol Biol Phys. 2014;88(3):630–5.

    Article  PubMed  Google Scholar 

  3. Banerjee R, et al. Small bowel dose parameters predicting grade >/= 3 acute toxicity in rectal cancer patients treated with neoadjuvant chemoradiation: an independent validation study comparing peritoneal space versus small bowel loop contouring techniques. Int J Radiat Oncol Biol Phys. 2013;85(5):1225–31.

    Article  PubMed  Google Scholar 

  4. Robertson JM, et al. The dose-volume relationship of small bowel irradiation and acute grade 3 diarrhea during chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2008;70(2):413–8.

    Article  CAS  PubMed  Google Scholar 

  5. Gunnlaugsson A, et al. Dose-volume relationships between enteritis and irradiated bowel volumes during 5-fluorouracil and oxaliplatin based chemoradiotherapy in locally advanced rectal cancer. Acta Oncol. 2007;46(7):937–44.

    Article  CAS  PubMed  Google Scholar 

  6. Tho LM, et al. Acute small bowel toxicity and preoperative chemoradiotherapy for rectal cancer: investigating dose-volume relationships and role for inverse planning. Int J Radiat Oncol Biol Phys. 2006;66(2):505–13.

    Article  PubMed  Google Scholar 

  7. Son CH, et al. Dosimetric predictors of radiation-induced vaginal stenosis after pelvic radiation therapy for rectal and anal cancer. Int J Radiat Oncol Biol Phys. 2015;92(3):548–54.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Plastaras JP, Dionisi F, Wo JY. Gastrointestinal cancer: nonliver proton therapy for gastrointestinal cancers. Cancer J. 2014;20(6):378–86.

    Article  CAS  PubMed  Google Scholar 

  9. Tatsuzaki H, Urie MM, Willett CG. 3-D comparative study of proton vs. x-ray radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys. 1992;22(2):369–74.

    Article  CAS  PubMed  Google Scholar 

  10. Isacsson U, et al. Comparative treatment planning between proton and X-ray therapy in locally advanced rectal cancer. Radiother Oncol. 1996;41(3):263–72.

    Article  CAS  PubMed  Google Scholar 

  11. Colaco RJ, et al. Protons offer reduced bone marrow, small bowel, and urinary bladder exposure for patients receiving neoadjuvant radiotherapy for resectable rectal cancer. J Gastrointest Oncol. 2014;5(1):3–8.

    PubMed  PubMed Central  Google Scholar 

  12. Wolff HA, et al. Irradiation with protons for the individualized treatment of patients with locally advanced rectal cancer: a planning study with clinical implications. Radiother Oncol. 2012;102(1):30–7.

    Article  PubMed  Google Scholar 

  13. Dionisi F, B.S., Kirk M, Both S, Vennarini S, McDonough J, Metz JM, Plastaras JP, Pencil Beam Scanning Proton Therapy in the Treatment of Rectal Cancer, in American Society of Radiation Oncology Annual Meeting. 2013: Atlanta, GA.

    Google Scholar 

  14. Batra S, et al. Lower rates of acute gastrointestinal toxicity with pencil beam proton therapy relative to IMRT in neoadjuvant chemoradiation for rectal cancer. Int J Clin Oncol. 2015;33(3):696.

    Article  Google Scholar 

  15. Berman A, et al. Proton Reirradiation of recurrent rectal cancer: Dosimetric Comparsion, toxicities, and preliminary outcomes. IJPT. 2014.; in press

    Google Scholar 

  16. Braendengen M, et al. Delineation of gross tumor volume (GTV) for radiation treatment planning of locally advanced rectal cancer using information from MRI or FDG-PET/CT: a prospective study. Int J Radiat Oncol Biol Phys. 2011;81(4):e439–45.

    Article  PubMed  Google Scholar 

  17. Whaley JT, et al. Clinical utility of integrated positron emission tomography/computed tomography imaging in the clinical management and radiation treatment planning of locally advanced rectal cancer. Pract Radiat Oncol. 2014;4(4):226–32.

    Article  PubMed  Google Scholar 

  18. Myerson RJ, et al. Elective clinical target volumes for conformal therapy in anorectal cancer: a radiation therapy oncology group consensus panel contouring atlas. Int J Radiat Oncol Biol Phys. 2009;74(3):824–30.

    Article  PubMed  Google Scholar 

  19. Moyers MF, et al. Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys. 2001;49(5):1429–38.

    Article  CAS  PubMed  Google Scholar 

  20. Ng M, et al. Australasian gastrointestinal trials group (AGITG) contouring atlas and planning guidelines for intensity-modulated radiotherapy in anal cancer. Int J Radiat Oncol Biol Phys. 2012;83(5):1455–62.

    Article  PubMed  Google Scholar 

  21. Mell LK, et al. Association between bone marrow dosimetric parameters and acute hematologic toxicity in anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(5):1431–7.

    Article  PubMed  Google Scholar 

  22. Ojerholm E, et al. Pencil-beam scanning proton therapy for anal cancer: a dosimetric comparison with intensity-modulated radiotherapy. Acta Oncol. 2015;54(8):1209–17.

    Article  CAS  PubMed  Google Scholar 

  23. Lin H, et al. Supine craniospinal irradiation using a proton pencil beam scanning technique without match line changes for field junctions. Int J Radiat Oncol Biol Phys. 2014;90(1):71–8.

    Article  PubMed  Google Scholar 

  24. Kachnic LA, et al. RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal. Int J Radiat Oncol Biol Phys. 2013;86(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  25. Anand A, et al. Scanning proton beam therapy reduces normal tissue exposure in pelvic radiotherapy for anal cancer. Radiother Oncol. 2015;117(3):505–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Plastaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plastaras, J.P., Both, S., Lin, H., Hawkins, M. (2018). Lower Gastrointestinal Malignancies. In: Lee, N., et al. Target Volume Delineation and Treatment Planning for Particle Therapy. Practical Guides in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-42478-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42478-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42477-4

  • Online ISBN: 978-3-319-42478-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics