Skip to main content

Noninvasive Small Rodent Imaging: Significance for the 3R Principles

  • Chapter
  • First Online:
Small Animal Imaging

Abstract

Minimizing potential pain and distress as well as the number of animals in biomedical experimentation and in the drug discovery and development process is not only an ethical imperative but also a challenging and evolving area of research. Noninvasive imaging can refine in vivo experimentation by using alternative readouts which represent early disease state or adverse drug effects and which allow harmful progress to be detected. This is in contrast to animals being sacrificed at given time points and using artificial peri- or postmortem endpoints. In many instances noninvasive imaging may replace pathohistological assessment of disease progression with anatomic and functional readouts. Furthermore, the number of animals can be substantially reduced by using each animal as its own control, thereby improving statistical power and information that may relate better to that observed in the clinical assessment of therapy efficacy. Taking as basis some of our own activities in the area of preclinical lung research, we illustrate how imaging can contribute to the principles of humane experimental techniques outlined by Russell and Burch in 1959.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al Faraj A, Cieslar K, Lacroix G, Gaillard S, Canet-Soulas E, Crémillieux Y. In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett. 2009;9:1023–7.

    Article  CAS  PubMed  Google Scholar 

  • Al Faraj A, Bessaad A, Cieslar K, Lacroix G, Canet-Soulas E, Crémillieux Y. Long-term follow-up of lung biodistribution and effect of instilled SWCNTs using multiscale imaging techniques. Nanotechnology. 2010;21(17):175103.

    Article  PubMed  Google Scholar 

  • Al Faraj A, Fauvelle F, Luciani N, Lacroix G, Levy M, Crémillieux Y, Canet-Soulas E. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. Int J Nanomedicine. 2011;6:351–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ask K, Labiris R, Farkas L, Moeller A, Froese A, Farncombe T, McClelland GB, Inman M, Gauldie J, Kolb MR. Comparison between conventional and “clinical” assessment of experimental lung fibrosis. J Transl Med. 2008;6:16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Babin AL, Cannet C, Gérard C, Wyss D, Page CP, Beckmann N. Noninvasive assessment of bleomycin-induced lung injury and the effects of short-term glucocorticosteroid treatment in rats using MRI. J Magn Reson Imaging. 2011;33:603–14.

    Article  PubMed  Google Scholar 

  • Babin AL, Cannet C, Gérard C, Saint-Mezard P, Page CP, Sparrer H, Matsuguchi T, Beckmann N. Bleomycin-induced lung injury in mice investigated by MRI: model assessment for target analysis. Magn Reson Med. 2012;67:499–509.

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ. New treatments for COPD. Nat Rev Drug Discov. 2002;1:437–46.

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003;22:672–88.

    Article  CAS  PubMed  Google Scholar 

  • Basketter DA, Clewell H, Kimber I, Rossi A, et al. A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing- T4 report. ALTEX. 2012;29:3–91.

    Article  PubMed  Google Scholar 

  • Beckmann N. In vivo MR techniques in drug discovery and development. New York: Taylor & Francis; 2006.

    Book  Google Scholar 

  • Beckmann N, Garrido L. New applications of NMR in drug discovery and development. Cambridge, UK: Royal Society of Chemistry; 2013.

    Google Scholar 

  • Beckmann N, Tigani B, Mazzoni L, Fozard JR. MRI of lung parenchyma in rats and mice using a gradient-echo sequence. NMR Biomed. 2001a;14:297–306.

    Article  CAS  PubMed  Google Scholar 

  • Beckmann N, Tigani B, Ekatodramis D, Borer R, Mazzoni L, Fozard JR. Pulmonary edema induced by allergen challenge in the rat: noninvasive assessment by magnetic resonance imaging. Magn Reson Med. 2001b;45:88–95.

    Article  CAS  PubMed  Google Scholar 

  • Beckmann N, Cannet C, Zurbruegg S, Rudin M, Tigani B. Proton MRI of lung parenchyma reflects allergen-induced airway remodeling and endotoxin-aroused hyporesponsiveness: a step toward ventilation studies in spontaneously breathing rats. Magn Reson Med. 2004;52:258–68.

    Article  PubMed  Google Scholar 

  • Beckmann N, Cannet C, Karmouty-Quintana H, Tigani B, Zurbruegg S, Blé FX, Crémillieux Y, Trifilieff A. Lung MRI for experimental drug research. Eur J Radiol. 2007;64:381–96.

    Article  PubMed  Google Scholar 

  • Blé FX, Cannet C, Zurbruegg S, Karmouty-Quintana H, Bergmann R, Frossard N, Trifilieff A, Beckmann N. Allergen-induced lung inflammation in actively sensitized mice assessed with MR imaging. Radiology. 2008;248:834–43.

    Article  PubMed  Google Scholar 

  • Boone JM, Velazquez O, Cherry SR. Small-animal X-ray dose from micro-CT. Mol Imaging. 2004;3:149–58.

    Article  PubMed  Google Scholar 

  • Brusselle GG, Bracke KR, Maes T, D’hulst AI, Moerloose KB, Joos GF, Pauwels RA. Murine models of COPD. Pulm Pharmacol Ther. 2006;19:155–65.

    Article  CAS  PubMed  Google Scholar 

  • Canning BJ. Modeling asthma and COPD in animals: a pointless exercise? Curr Opin Pharmacol. 2003;3:244–50.

    Article  CAS  PubMed  Google Scholar 

  • Card JW, Voltz JW, Carey MA, Bradbury JA, Degraff LM, Lih FB, Bonner JC, Morgan DL, Flake GP, Zeldin DC. Cyclooxygenase-2 deficiency exacerbates bleomycin-induced lung dysfunction but not fibrosis. Am J Respir Cell Mol Biol. 2007;37:300–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dackor RT, Cheng J, Voltz JW, Card JW, et al. Prostaglandin E2 protects murine lungs from bleomycin-induced pulmonary fibrosis and lung dysfunction. Am J Physiol Lung Cell Mol Physiol. 2011;301:L645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Langhe E, Vande Velde G, Hostens J, Himmelreich U, Nemery B, Luyten FP, Vanoirbeek J, Lories RJ. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography. PLoS One. 2012;7(8):e43123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Driehuys B, Hedlund LW. Imaging techniques for small animal models of pulmonary disease: MR microscopy. Toxicol Pathol. 2007;35:49–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebihara T, Venkatesan N, Tanaka R, Ludwig MS. Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects. Am J Respir Crit Care Med. 2000;162:1569–76.

    Article  CAS  PubMed  Google Scholar 

  • Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV. Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med. 1996;2:1236–9.

    Article  CAS  PubMed  Google Scholar 

  • Egger C, Cannet C, Gérard C, Jarman E, Jarai G, et al. Administration of bleomycin via the oropharyngeal aspiration route leads to sustained lung fibrosis in mice and rats as quantified by UTE-MRI and histology. PLoS One. 2013;8(5):e63432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger C, Gérard C, Vidotto N, Accart N, Cannet C, et al. Lung volume quantified noninvasively by MRI reflects extracellular-matrix deposition and altered pulmonary function in small rodent bleomycin models of fibrosis. Am J Physiol Lung Cell Mol Physiol. 2014;306:L1064–L1077.

    Google Scholar 

  • Egger C, Cannet C, Gérard C, Dunbar A, Tigani B, Beckmann N (2015) Hyaluronidase modulates bleomycin-induced lung injury detected non-invasively in small rodents by radial proton MRI. J Magn Reson Imaging. 2015;41:755–64. doi:10.1002/jmri.24612.

  • Ferreira JC, Benseñor FE, Rocha MJ, Salge JM, et al. A sigmoidal fit for pressure-volume curves of idiopathic pulmonary fibrosis patients on mechanical ventilation: clinical implications. Clinics (Sao Paulo). 2011;66:1157–63.

    Article  Google Scholar 

  • Foster WM, Walters DM, Longphre M, Macri K, Miller LM. Methodology for the measurement of mucociliary function in the mouse by scintigraphy. J Appl Physiol. 2001;90:1111–7.

    CAS  PubMed  Google Scholar 

  • Gewalt SL, Glover GH, Hedlund LW, Cofer GP, MacFall JR, Johnson GA. MR microscopy of the rat lung using projection reconstruction. Magn Reson Med. 1993;29:99–106.

    Article  CAS  PubMed  Google Scholar 

  • Glaab T, Taube C, Braun A, Mitzner W. Invasive and noninvasive methods for studying pulmonary function in mice. Respir Res. 2007;8:63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Graves PR, Siddiqui F, Anscher MS, Movsas B. Radiation pulmonary toxicity: from mechanisms to management. Semin Radiat Oncol. 2010;20:201–7.

    Article  PubMed  Google Scholar 

  • Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med. 2001;345:517–25.

    Article  CAS  PubMed  Google Scholar 

  • Guillouzo A, Guguen-Guillouzo C. Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol. 2008;4:1279–94.

    Article  CAS  PubMed  Google Scholar 

  • Hamid Q, Tulic’ MK, Liu MC, Moqbel R. Inflammatory cells in asthma: mechanisms and implications for therapy. J Allergy Clin Immunol. 2003;111(Suppl):S5–12.

    Article  CAS  PubMed  Google Scholar 

  • Hedlund LW, Cofer GP, Owen SJ, Johnson GA. MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging. Magn Reson Imaging. 2000;18:753–9.

    Article  CAS  PubMed  Google Scholar 

  • Hockings PD, Powell H. In vivo MRI/S for the safety evaluation of pharmaceuticals. In: Garrido L, Beckmann N, editors. New applications of NMR in drug discovery and development. Cambridge, UK: Royal Society of Chemistry Publishing; 2013. p. 361–75.

    Chapter  Google Scholar 

  • Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008;38:709–50.

    Article  CAS  PubMed  Google Scholar 

  • Hoymann HG. Invasive and noninvasive lung function measurements in rodents. J Pharmacol Toxicol Methods. 2007;55:16–26.

    Article  CAS  PubMed  Google Scholar 

  • Hunninghake GW, Schwarz MI. Does current knowledge explain the pathogenesis of idiopathic pulmonary fibrosis? A perspective. Proc Am Thorac Soc. 2007;4:449–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacob RE, Amidan BG, Soelberg J, Minard KR. In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J Magn Reson Imaging. 2010;31:1091–9.

    Article  PubMed  Google Scholar 

  • Johnson KA. Imaging techniques for small animal imaging models of pulmonary disease: micro-CT. Toxicol Pathol. 2007;35:59–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karmouty-Quintana H, Cannet C, Zurbruegg S, Blé FX, Fozard JR, Page CP, Beckmann N. Bleomycin-induced lung injury assessed noninvasively and in spontaneously breathing rats by proton MRI. J Magn Reson Imaging. 2007;26:941–9.

    Article  PubMed  Google Scholar 

  • Katzenstein AL, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med. 1998;157:1301–15.

    Article  CAS  PubMed  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010;8:e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakatos HF, Burgess HA, Thatcher TH, Redonnet MR, Hernady E, et al. Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation. Exp Lung Res. 2006;32:181–99.

    Article  CAS  PubMed  Google Scholar 

  • Leslie KO. Pathology of interstitial lung disease. Clin Chest Med. 2004;25:657–703. vi.

    Article  PubMed  Google Scholar 

  • Lloyd CM. Building better mouse models of asthma. Curr Allergy Asthma Rep. 2007;7:231–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manali ED, Moschos C, Triantafillidou C, Kotanidou A, et al. Static and dynamic mechanics of the murine lung after intratracheal bleomycin. BMC Pulm Med. 2011;11:33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin JG, Tamaoka M. Rat models of asthma and chronic obstructive lung disease. Pulm Pharmacol Ther. 2006;19:377–85.

    Article  CAS  PubMed  Google Scholar 

  • Milton PL, Dickinson H, Jenkin G, Lim R. Assessment of respiratory physiology of C57BL/6 mice following bleomycin administration using barometric plethysmography. Respiration. 2012;83:253–66.

    Article  CAS  PubMed  Google Scholar 

  • Mirfazaelian A, Fisher JW. Organ growth functions in maturing male Sprague–Dawley rats based on a collective database. J Toxicol Environ Health A. 2007;70:1052–63.

    Article  CAS  PubMed  Google Scholar 

  • Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;294:L152–60.

    Article  CAS  PubMed  Google Scholar 

  • Mouratis MA, Aidinis V. Modeling pulmonary fibrosis with bleomycin. Curr Opin Pulm Med. 2011;17:355–61.

    Article  CAS  PubMed  Google Scholar 

  • Nava S, Rubini F. Lung and chest wall mechanics in ventilated patients with end stage idiopathic pulmonary fibrosis. Thorax. 1999;54:390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickles HT, Sumkauskaite M, Wang X, Wegner I, Puderbach M, Kuebler WM. Mechanical ventilation causes airway distension with proinflammatory sequelae in mice. Am J Physiol Lung Cell Metab. 2014;307:L27–37.

    Article  CAS  Google Scholar 

  • Pamies D, Hartung T, Hogberg HT. Biological and medical applications of a brain-on-a-chip. Exp Biol Med. (Maywood) 2014;239:1096–107.

    Google Scholar 

  • Peng X, Abdulnour RE, Sammani S, Ma SF, Han EJ, Hasan EJ, Tuder R, Garcia JG, Hassoun PM. Inducible nitric oxide synthase contributes to ventilator-induced lung injury. Am J Respir Crit Care Med. 2005;172:470–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plathow C, Li M, Gong P, Zieher H, Kiessling F, et al. Computed tomography monitoring of radiation induced lung fibrosis in mice. Invest Radiol. 2004;39:600–9.

    Article  PubMed  Google Scholar 

  • Quintana HK, Cannet C, Zurbruegg S, Blé FX, Fozard JR, Page CP, Beckmann N. Proton MRI as a noninvasive tool to assess elastase-induced lung damage in spontaneously breathing rats. Magn Reson Med. 2006;56:1242–50.

    Article  CAS  PubMed  Google Scholar 

  • Raghu G, Collard HR, Egan JJ, Martinez FJ, et al. ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788–824.

    Article  PubMed  Google Scholar 

  • Reid D. MRI in pharmaceutical safety assessment. In: Beckmann N, editor. In vivo MR techniques in drug discovery and development. New York: Taylor & Francis; 2006. p. 537–54.

    Chapter  Google Scholar 

  • Ripoll J, Ntziachristos V, Cannet C, Babin AL, Kneuer R, Gremlich HU, Beckmann N. Investigating pharmacology in vivo using magnetic resonance and optical imaging. Drugs R D. 2008;9:277–306.

    Article  CAS  PubMed  Google Scholar 

  • Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2:123–31.

    Article  CAS  PubMed  Google Scholar 

  • Rudin M, Briner U, Doepfner W. Quantitative magnetic resonance imaging of estradiol-induced pituitary hyperplasia in rats. Magn Reson Med. 1988;7:285–91.

    Article  CAS  PubMed  Google Scholar 

  • Russell WMS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959.

    Google Scholar 

  • Schuster DP, Kovacs A, Garbow J, Piwnica-Worms D. Recent advances in imaging the lungs of intact small animals. Am J Respir Cell Mol Biol. 2004;30:129–38.

    Article  CAS  PubMed  Google Scholar 

  • Scotton CJ, Chambers RC. Bleomycin revisited: towards a more representative model of IPF? Am J Physiol Lung Cell Mol Physiol. 2010;299:L439–41.

    Article  CAS  PubMed  Google Scholar 

  • Shofer S, Badea C, Qi Y, Potts E, Foster WM, Johnson GA. A micro-CT analysis of murine lung recruitment in bleomycin-induced lung injury. J Appl Physiol. 2008;105:669–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spielmann H, Grune B, Liebsch M, Seiler A, Vogel R. Successful validation of in vitro methods in toxicology by ZEBET, the National Centre for Alternatives in Germany at the BfR (Federal Institute for Risk Assessment). Exp Toxicol Pathol. 2008;60:225–33.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Togao O, Obara M, van Cauteren M, Ohno Y, et al. Ultra-short echo time (UTE) MR imaging of the lung: comparison between normal and emphysematous lungs in mutant mice. J Magn Reson Imaging. 2010;32:326–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tigani B, Schaeublin E, Sugar R, Jackson AD, Fozard JR, Beckmann N. Pulmonary inflammation monitored noninvasively by MRI in freely breathing rats. Biochem Biophys Res Commun. 2002;292:216–21.

    Article  CAS  PubMed  Google Scholar 

  • Tigani B, Cannet C, Zurbrugg S, Schaeublin E, Mazzoni L, Fozard JR, Beckmann N. Resolution of the oedema associated with allergic pulmonary inflammation in rats assessed noninvasively by magnetic resonance imaging. Br J Pharmacol. 2003;140:239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Echteld CJ, Beckmann N. A view on imaging in drug research and development for respiratory diseases. J Pharmacol Exp Ther. 2011;337:335–49.

    Article  PubMed  Google Scholar 

  • Velde GV, De Langhe E, Poelmans J, Dresselaers T, Lories RJ, Himmelreich U. Magnetic resonance imaging for noninvasive assessment of lung fibrosis onset and progression: cross-validation and comparison of different magnetic resonance imaging protocols with micro-computed tomography and histology in the bleomycin-induced mouse model. Invest Radiol. 2014;49(11):691–8. doi:10.1097/RLI.0000000000000071.

    Article  Google Scholar 

  • Verbeken EK, Cauberghs M, Lauweryns JM, Van de Woestijne KP. Structure and function in fibrosing alveolitis. J Appl Physiol (1985). 1994;76:731–42.

    CAS  Google Scholar 

  • Walder B, Fontao E, Totsch M, Morel DR. Time and tidal volume-dependent ventilator-induced lung injury in healthy rats. Eur J Anaesthesiol. 2005;10:785–94.

    Google Scholar 

  • Walmsley GG, Hyun J, McArdle A, Senarath-Yapa K, Hu MS, Chung MT, Wong VW, Longaker MT, Wan DC. Induced Pluripotent Stem Cells in Regenerative Medicine and Disease Modeling. Curr Stem Cell Res Ther. 2014;9:73–81.

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Yan SX. Biomedical imaging in the safety evaluation of new drugs. Lab Anim. 2008;42:433–41.

    Article  CAS  PubMed  Google Scholar 

  • Westergren-Thorsson G, Hernnäs J, Särnstrand B, Oldberg A, Heinegård D, Malmström A. Altered expression of small proteoglycans, collagen, and transforming growth factor-beta 1 in developing bleomycin-induced pulmonary fibrosis in rats. J Clin Invest. 1993;92:632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurek M, Bessaad A, Cieslar K, Crémillieux Y. Validation of simple and robust protocols for high-resolution lung proton MRI in mice. Magn Reson Med. 2010;64:401–7.

    PubMed  Google Scholar 

  • Zurek M, Boyer L, Caramelle P, Boczkowski J, Crémillieux Y. Longitudinal and noninvasive assessment of emphysema evolution in a murine model using proton MRI. Magn Reson Med. 2012;68:898–904.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolau Beckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Beckmann, N., Ledermann, B. (2017). Noninvasive Small Rodent Imaging: Significance for the 3R Principles. In: Kiessling, F., Pichler, B., Hauff, P. (eds) Small Animal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42202-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42202-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42200-8

  • Online ISBN: 978-3-319-42202-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics