Skip to main content

Polymorphisms in Non-coding RNA Genes and Their Targets Sites as Risk Factors of Sporadic Colorectal Cancer

  • Chapter
  • First Online:
Non-coding RNAs in Colorectal Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 937))

Abstract

Colorectal cancer (CRC) is a complex disease that develops as a consequence of both genetic and environmental risk factors in interplay with epigenetic mechanisms, such as microRNAs (miRNAs). CRC cases are predominantly sporadic in which the disease develops with no apparent hereditary syndrome. The last decade has seen the progress of genome-wide association studies (GWAS) that allowed the discovery of several genetic regions and variants associated with weak effects on sporadic CRC. Collectively these variants may enable a more accurate prediction of an individual’s risk to the disease and its prognosis. However, the number of variants contributing to CRC is still not fully explored.

SNPs in genes encoding the miRNA sequence or in 3′UTR regions of the corresponding binding sites may affect miRNA transcription, miRNA processing, and/or the fidelity of the miRNA–mRNA interaction. These variants could plausibly impact miRNA expression and target mRNA translation into proteins critical for cellular integrity, differentiation, and proliferation.

In the present chapter, we describe the different aspects of variations related to miRNAs and other non-coding RNAs (ncRNAs) and evidence from studies investigating these candidate genetic alterations in support to their role in CRC development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haraksingh RR, Snyder MP. Impacts of variation in the human genome on gene regulation. J Mol Biol. 2013;425(21):3970–7. doi:10.1016/j.jmb.2013.07.015.

    Article  CAS  PubMed  Google Scholar 

  2. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi:10.1038/nature11632.

    Article  PubMed  CAS  Google Scholar 

  3. Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, Gerstein M. Role of non-coding sequence variants in cancer. Nat Rev Genet. 2016;17(2):93–108. doi:10.1038/nrg.2015.17.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang K, Civan J, Mukherjee S, Patel F, Yang H. Genetic variations in colorectal cancer risk and clinical outcome. World J Gastroenterol. 2014;20(15):4167–77. doi:10.3748/wjg.v20.i15.4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191–7. doi:10.1055/s-0029-1242458.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peters U, Bien S, Zubair N. Genetic architecture of colorectal cancer. Gut. 2015;64(10):1623–36. doi:10.1136/gutjnl-2013-306705.

    Article  CAS  PubMed  Google Scholar 

  7. de la Chapelle A. Genetic predisposition to human disease: allele-specific expression and lowpenetrance regulatory loci. Oncogene. 2009;28(38):3345–8. doi:10.1038/onc.2009.194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Srinivasan S, Clements JA, Batra J. Single nucleotide polymorphisms in clinics: fantasy or reality for cancer? Crit Rev Clin Lab Sci. 2015;53(1):29–39. doi:10.3109/10408363.2015.1075469.

    Article  PubMed  CAS  Google Scholar 

  9. Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet. 2009;10(6):353–8. doi:10.1038/nrg2574.

    Article  CAS  PubMed  Google Scholar 

  10. Bhalla A, Zulfiqar M, Weindel M, Shidham VB. Molecular diagnostics in colorectal carcinoma. Clin Lab Med. 2013;33(4):835–59. doi:10.1016/j.cll.2013.10.001.

    Article  PubMed  Google Scholar 

  11. Diaz Jr LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40. doi:10.1038/nature11219.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomlinson IP, Houlston RS, Montgomery GW, Sieber OM, Dunlop MG. Investigation of the effects of DNA repair gene polymorphisms on the risk of colorectal cancer. Mutagenesis. 2012;27(2):219–23. doi:10.1093/mutage/ger070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martens-Uzunova ES, Olvedy M, Jenster G. Beyond microRNA–novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett. 2013;340(2):201–11. doi:10.1016/j.canlet.2012.11.058.

    Article  CAS  PubMed  Google Scholar 

  14. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. doi:10.1038/nature02871.

    Article  CAS  PubMed  Google Scholar 

  15. Spizzo R, Nicoloso MS, Croce CM, Calin GA. SnapShot: microRNAs in cancer. Cell. 2009;137(3):586–e1. doi:10.1016/j.cell.2009.04.040.

    Article  CAS  PubMed  Google Scholar 

  16. Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet. 2007;16(9):1124–31. doi:10.1093/hmg/ddm062.

    Article  CAS  PubMed  Google Scholar 

  17. Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70(7):2789–98. doi:10.1158/0008-5472.CAN-09-3541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis. 2008;29(7):1306–11. doi:10.1093/carcin/bgn116.

    Article  CAS  PubMed  Google Scholar 

  19. Wojcicka A, de la Chapelle A, Jazdzewski K. MicroRNA-related sequence variations in human cancers. Hum Genet. 2014;133(4):463–9. doi:10.1007/s00439-013-1397-x.

    Article  CAS  PubMed  Google Scholar 

  20. Afonso-Grunz F, Muller S. Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci. 2015. doi:10.1007/s00018-015-1922-2.

    PubMed  Google Scholar 

  21. Thomas LF, Saetrom P. Single nucleotide polymorphisms can create alternative polyadenylation signals and affect gene expression through loss of microRNA-regulation. PLoS Comput Biol. 2012;8(8):e1002621. doi:10.1371/journal.pcbi.1002621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mishra PJ, Banerjee D, Bertino JR. MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle. 2008;7(7):853–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mishra PJ, Bertino JR. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics. 2009;10(3):399–416. doi:10.2217/14622416.10.3.399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet. 2006;38(12):1452–6. doi:10.1038/ng1910.

    Article  CAS  PubMed  Google Scholar 

  25. Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A. 2007;104(9):3300–5. doi:10.1073/pnas.0611347104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu C, Zhang F, Li T, Lu M, Wang L, Yue W, et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics. 2012;13:661. doi:10.1186/1471-2164-13-661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pardini B, Rosa F, Barone E, Di Gaetano C, Slyskova J, Novotny J, et al. Variation within 3′-UTRs of base excision repair genes and response to therapy in colorectal cancer patients: a potential modulation of microRNAs binding. Clin Cancer Res. 2013;19(21):6044–56. doi:10.1158/1078-0432.CCR-13-0314.

    Article  CAS  PubMed  Google Scholar 

  28. Mishra PJ, Humeniuk R, Longo-Sorbello GS, Banerjee D, Bertino JR. A miR-24 microRNA bindingsite polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A. 2007;104(33):13513–8. doi:10.1073/pnas.0706217104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402. doi:10.1038/nrc2867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen H, Sun LY, Chen LL, Zheng HQ, Zhang QF. A variant in microRNA-196a2 is not associated with susceptibility to and progression of colorectal cancer in Chinese. Intern Med J. 2012;42(6):e115–9. doi:10.1111/j.1445-5994.2011.02434.x.

    Article  CAS  PubMed  Google Scholar 

  31. Zhan JF, Chen LH, Chen ZX, Yuan YW, Xie GZ, Sun AM, et al. A functional variant in microRNA- 196a2 is associated with susceptibility of colorectal cancer in a Chinese population. Arch Med Res. 2011;42(2):144–8. doi:10.1016/j.arcmed.2011.04.001.

    Article  CAS  PubMed  Google Scholar 

  32. Boni V, Zarate R, Villa JC, Bandres E, Gomez MA, Maiello E, et al. Role of primary miRNA polymorphic variants in metastatic colon cancer patients treated with 5-fluorouracil and irinotecan. Pharmacogenomics J. 2011;11(6):429–36. doi:10.1038/tpj.2010.58.

    Article  CAS  PubMed  Google Scholar 

  33. Xing J, Wan S, Zhou F, Qu F, Li B, Myers RE, et al. Genetic polymorphisms in pre-microRNA genes as prognostic markers of colorectal cancer. Cancer Epidemiol Biomark Prev. 2012;21(1):217–27. doi:10.1158/1055-9965.EPI-11-0624.

    Article  CAS  Google Scholar 

  34. Zhu L, Chu H, Gu D, Ma L, Shi D, Zhong D, et al. A functional polymorphism in miRNA-196a2 is associated with colorectal cancer risk in a Chinese population. DNA Cell Biol. 2012;31(3):350–4. doi:10.1089/dna.2011.1348.

    Article  CAS  PubMed  Google Scholar 

  35. Ryan BM, McClary AC, Valeri N, Robinson D, Paone A, Bowman ED, et al. rs4919510 in hsa-mir-608 is associated with outcome but not risk of colorectal cancer. PLoS One. 2012;7(5):e36306. doi:10.1371/journal.pone.0036306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin M, Gu J, Eng C, Ellis LM, Hildebrandt MA, Lin J, et al. Genetic polymorphisms in microRNA related genes as predictors of clinical outcomes in colorectal adenocarcinoma patients. Clin Cancer Res. 2012;18(14):3982–91. doi:10.1158/1078-0432.CCR-11-2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu X, Li L, Shang M, Zhou J, Song X, Lu X, et al. Association between microRNA genetic variants and susceptibility to colorectal cancer in Chinese population. Tumour Biol. 2014;35(3):2151–6. doi:10.1007/s13277-013-1285-y.

    Article  CAS  PubMed  Google Scholar 

  38. Oh J, Kim JW, Lee BE, Jang MJ, Chong SY, Park PW, et al. Polymorphisms of the pri-miR-34b/c promoter and TP53 codon 72 are associated with risk of colorectal cancer. Oncol Rep. 2014;31(2):995–1002. doi:10.3892/or.2013.2926.

    CAS  PubMed  Google Scholar 

  39. Parlayan C, Ikeda S, Sato N, Sawabe M, Muramatsu M, Arai T. Association analysis of single nucleotide polymorphisms in miR-146a and miR-196a2 on the prevalence of cancer in elderly Japanese: a case-control study. Asian Pac J Cancer Prev. 2014;15(5):2101–7.

    Article  PubMed  Google Scholar 

  40. Wang Z, Sun X, Wang Y, Liu X, Xuan Y, Hu S. Association between miR-27a genetic variants and susceptibility to colorectal cancer. Diagn Pathol. 2014;9:146. doi:10.1186/1746-1596-9-146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pardini B, Rosa F, Naccarati A, Vymetalkova V, Ye Y, Wu X, et al. Polymorphisms in microRNA genes as predictors of clinical outcomes in colorectal cancer patients. Carcinogenesis. 2015;36(1):82–6. doi:10.1093/carcin/bgu224.

    Article  CAS  PubMed  Google Scholar 

  42. Cao Y, Hu J, Fang Y, Chen Q, Li H. Association between a functional variant in microRNA-27a and susceptibility to colorectal cancer in a Chinese Han population. Genet Mol Res. 2014;13(3):7420–7. doi:10.4238/2014.September.12.8.

    Article  CAS  PubMed  Google Scholar 

  43. Gao LB, Li LJ, Pan XM, Li ZH, Liang WB, Bai P, et al. A genetic variant in the promoter region of miR- 34b/c is associated with a reduced risk of colorectal cancer. Biol Chem. 2013;394(3):415–20. doi:10.1515/hsz-2012-0297.

    Article  CAS  PubMed  Google Scholar 

  44. Tang R, Qi Q, Wu R, Zhou X, Wu D, Zhou H, et al. The polymorphic terminal-loop of pre-miR-1307 binding with MBNL1 contributes to colorectal carcinogenesis via interference with Dicer1 recruitment. Carcinogenesis. 2015;36(8):867–75. doi:10.1093/carcin/bgv066.

    Article  CAS  PubMed  Google Scholar 

  45. Vinci S, Gelmini S, Mancini I, Malentacchi F, Pazzagli M, Beltrami C, et al. Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. Methods. 2013;59(1):138–46. doi:10.1016/j.ymeth.2012.09.002.

    Article  CAS  PubMed  Google Scholar 

  46. Dikaiakos P, Gazouli M, Rizos S, Zografos G, Theodoropoulos GE. Evaluation of genetic variants in miRNAs in patients with colorectal cancer. Cancer Biomark. 2015;15(2):157–62. doi:10.3233/CBM-140449.

    CAS  PubMed  Google Scholar 

  47. Kupcinskas J, Bruzaite I, Juzenas S, Gyvyte U, Jonaitis L, Kiudelis G, et al. Lack of association between miR-27a, miR-146a, miR-196a-2, miR-492 and miR-608 gene polymorphisms and colorectal cancer. Sci Rep. 2014;4:5993. doi:10.1038/srep05993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Min KT, Kim JW, Jeon YJ, Jang MJ, Chong SY, Oh D, et al. Association of the miR-146aC>G, 149C>T, 196a2C>T, and 499A>G polymorphisms with colorectal cancer in the Korean population. Mol Carcinog. 2012;51 Suppl 1:E65–73. doi:10.1002/mc.21849.

    Article  CAS  PubMed  Google Scholar 

  49. Lv M, Dong W, Li L, Zhang L, Su X, Wang L, et al. Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population. J Cancer Res Clin Oncol. 2013;139(8):1405–10. doi:10.1007/s00432-013-1456-7.

    Article  CAS  PubMed  Google Scholar 

  50. Hezova R, Kovarikova A, Bienertova-Vasku J, Sachlova M, Redova M, Vasku A, et al. Evaluation of SNPs in miR-196-a2, miR-27a and miR-146a as risk factors of colorectal cancer. World J Gastroenterol. 2012;18(22):2827–31. doi:10.3748/wjg.v18.i22.2827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang FJ, Ding Y, Mao YY, Jing FY, Zhang ZY, Jiang LF, et al. Associations between hsa-miR-603 polymorphism, lifestyle-related factors and colorectal cancer risk. Cancer Biomark. 2014;14(4):225–31. doi:10.3233/CBM-140395.

    PubMed  Google Scholar 

  52. Wu Y, Hao X, Feng Z, Liu Y. Genetic polymorphisms in miRNAs and susceptibility to colorectal cancer. Cell Biochem Biophys. 2015;71(1):271–8. doi:10.1007/s12013-014-0195-y.

    Article  CAS  PubMed  Google Scholar 

  53. Liu XX, Wang M, Xu D, Yang JH, Kang HF, Wang XJ, et al. Quantitative assessment of the association between genetic variants in MicroRNAs and colorectal cancer risk. BioMed Res Int. 2015;2015:276410. doi:10.1155/2015/276410.

    PubMed  PubMed Central  Google Scholar 

  54. Xie WQ, Tan SY, Wang XF. Effect of a common genetic variant microRNA-146a rs2910164 on colorectal cancer: a meta-analysis. J Dig Dis. 2014;15(12):647–53. doi:10.1111/1751-2980.12201.

    Article  CAS  PubMed  Google Scholar 

  55. Yi DH, Wang BG, Zhong XP, Liu H, Liu YF. Pri-miR-34b/c rs4938723 TC heterozygote is associated with increased cancer risks: evidence from published data. Tumour Biol. 2014;35(12):11967–75. doi:10.1007/s13277-014-2493-9.

    Article  CAS  PubMed  Google Scholar 

  56. Li X, Wang L, Yu J, Xu J, Du J. The genetic association between pri-miR-34b/c polymorphism (rs4938723 T > C) and susceptibility to cancers: evidence from published studies. Tumour Biol. 2014;35(12):12525–34. doi:10.1007/s13277-014-2572-y.

    Article  CAS  PubMed  Google Scholar 

  57. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105(20):7269–74. doi:10.1073/pnas.0802682105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li W, Duan R, Kooy F, Sherman SL, Zhou W, Jin P. Germline mutation of microRNA-125a is associated with breast cancer. J Med Genet. 2009;46(5):358–60. doi:10.1136/jmg.2008.063123.

    Article  CAS  PubMed  Google Scholar 

  59. Lehmann TP, Korski K, Ibbs M, Zawierucha P, Grodecka-Gazdecka S, Jagodzinski PP. rs12976445 variant in the pri-miR-125a correlates with a lower level of hsa-miR-125a and ERBB2 overexpression in breast cancer patients. Oncol Lett. 2013;5(2):569–73. doi:10.3892/ol.2012.1040.

    CAS  PubMed  Google Scholar 

  60. Landi D, Gemignani F, Barale R, Landi S. A catalog of polymorphisms falling in microRNA-binding regions of cancer genes. DNA Cell Biol. 2008;27(1):35–43. doi:10.1089/dna.2007.0650.

    Article  CAS  PubMed  Google Scholar 

  61. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC, et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood. 2007;109(12):5079–86. doi:10.1182/blood-2007-02-071225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801. doi:10.1056/NEJMoa050995.

    Article  CAS  PubMed  Google Scholar 

  63. Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol. 2006;13(9):849–51. doi:10.1038/nsmb1138.

    Article  CAS  PubMed  Google Scholar 

  64. Hausser J, Zavolan M. Identification and consequences of miRNA-target interactions–beyond repression of gene expression. Nat Rev Genet. 2014;15(9):599–612. doi:10.1038/nrg3765.

    Article  CAS  PubMed  Google Scholar 

  65. Jazdzewski K, de la Chapelle A. Genomic sequence matters: a SNP in microRNA-146a can turn anti-apoptotic. Cell Cycle. 2009;8(11):1642–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu B, Feng NH, Li PC, Tao J, Wu D, Zhang ZD, et al. A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate. 2010;70(5):467–72. doi:10.1002/pros.21080.

    CAS  PubMed  Google Scholar 

  67. Wang M, Chu H, Li P, Yuan L, Fu G, Ma L, et al. Genetic variants in miRNAs predict bladder cancer risk and recurrence. Cancer Res. 2012;72(23):6173–82. doi:10.1158/0008-5472.CAN-12-0688.

    Article  CAS  PubMed  Google Scholar 

  68. Ma L, Zhu L, Gu D, Chu H, Tong N, Chen J, et al. A genetic variant in miR-146a modifies colorectal cancer susceptibility in a Chinese population. Arch Toxicol. 2013;87(5):825–33. doi:10.1007/s00204-012-1004-2.

    Article  CAS  PubMed  Google Scholar 

  69. Goel A, Boland CR. Recent insights into the pathogenesis of colorectal cancer. Curr Opin Gastroenterol. 2010;26(1):47–52. doi:10.1097/MOG.0b013e328332b850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang R, Su B. MicroRNA regulation and the variability of human cortical gene expression. Nucleic Acids Res. 2008;36(14):4621–8. doi:10.1093/nar/gkn431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008;24(10):489–97. doi:10.1016/j.tig.2008.07.004.

    Article  CAS  PubMed  Google Scholar 

  72. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214–20. doi:10.1038/nature03817.

    Article  CAS  PubMed  Google Scholar 

  73. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39(10):1278–84. doi:10.1038/ng2135.

    Article  CAS  PubMed  Google Scholar 

  74. Wexler Y, Zilberstein C, Ziv-Ukelson M. A study of accessible motifs and RNA folding complexity. J Comput Biol. 2007;14(6):856–72. doi:10.1089/cmb.2007.R020.

    Article  CAS  PubMed  Google Scholar 

  75. Hon LS, Zhang Z. The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol. 2007;8(8):R166. doi:10.1186/gb-2007-8-8-r166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet. 2013;14(7):496–506. doi:10.1038/nrg3482.

    Article  CAS  PubMed  Google Scholar 

  77. Tian B, Manley JL. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci. 2013;38(6):312–20. doi:10.1016/j.tibs.2013.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science. 2008;320(5883):1643–7. doi:10.1126/science.1155390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Muller S. In silico analysis of regulatory networks underlines the role of miR-10b-5p and its target BDNF in huntington’s disease. Transl Neurodegener. 2014;3:17. doi:10.1186/2047-9158-3-17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Varendi K, Kumar A, Harma MA, Andressoo JO. miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cell Mol Life Sci. 2014;71(22):4443–56. doi:10.1007/s00018-014-1628-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mayr C, Bartel DP. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–84. doi:10.1016/j.cell.2009.06.016 S0092-8674(09)00716-8 [pii].

  82. Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates 3rd JR, et al. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell. 2009;33(3):365–76. doi:10.1016/j.molcel.2008.12.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1):91–105. doi:10.1016/j.molcel.2007.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pipan V, Zorc M, Kunej T. MicroRNA polymorphisms in cancer: a literature analysis. Cancers (Basel). 2015;7(3):1806–14. doi:10.3390/cancers7030863.

    Article  Google Scholar 

  85. Naccarati A, Pardini B, Stefano L, Landi D, Slyskova J, Novotny J, et al. Polymorphisms in miRNAbinding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis. 2012;33(7):1346–51. doi:10.1093/carcin/bgs172.

    Article  CAS  PubMed  Google Scholar 

  86. Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008;29(3):579–84. doi:10.1093/carcin/bgm304.

    Article  CAS  PubMed  Google Scholar 

  87. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70. doi:10.1158/0008-5472.CAN-05-1783.

    Article  CAS  PubMed  Google Scholar 

  88. Vymetalkova V, Pardini B, Rosa F, Di Gaetano C, Novotny J, Levy M, et al. Variations in mismatch repair genes and colorectal cancer risk and clinical outcome. Mutagenesis. 2014;29(4):259–65. doi:10.1093/mutage/geu014.

    Article  CAS  PubMed  Google Scholar 

  89. Naccarati A, Rosa F, Vymetalkova V, Barone E, Jiraskova K, Di Gaetano C, et al. Double-strand break repair and colorectal cancer: gene variants within 3′ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget. 2015. doi:10.18632/oncotarget.6804.

    Google Scholar 

  90. Landi D, Gemignani F, Pardini B, Naccarati A, Garritano S, Vodicka P, et al. Identification of candidate genes carrying polymorphisms associated with the risk of colorectal cancer by analyzing the colorectal mutome and microRNAome. Cancer. 2012;118(19):4670–80. doi:10.1002/cncr.27435.

    Article  CAS  PubMed  Google Scholar 

  91. Winder T, Scheithauer W, Lang A. K-ras mutations and cetuximab in colorectal cancer. N Engl J Med. 2009;360(8):834–5; author reply 5–6.

    CAS  PubMed  Google Scholar 

  92. Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D, et al. Genetic modulation of the Let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J. 2010;10(5):458–64. doi:10.1038/tpj.2010.9.

    Article  CAS  PubMed  Google Scholar 

  93. Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3′UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17(24):7723–31. doi:10.1158/1078-0432.CCR-11-0990.

    Article  CAS  PubMed  Google Scholar 

  94. Sebio A, Pare L, Paez D, Salazar J, Gonzalez A, Sala N, et al. The LCS6 polymorphism in the binding site of let-7 microRNA to the KRAS 3′-untranslated region: its role in the efficacy of anti-EGFR-based therapy in metastatic colorectal cancer patients. Pharmacogenet Genomics. 2013;23(3):142–7. doi:10.1097/FPC.0b013e32835d9b0b.

    Article  CAS  PubMed  Google Scholar 

  95. Ryan BM, Robles AI, Harris CC. KRAS-LCS6 genotype as a prognostic marker in early-stage CRC–letter. Clin Cancer Res. 2012;18(12):3487–8. doi:10.1158/1078-0432.CCR-12-0250.

    Google Scholar 

  96. Zhang W, Labonte MJ, Lenz HJ. KRAS let-7 LCS6 SNP predicts cetuximab efficacy in KRASwt metastatic colorectal cancer patients: Does treatment combination partner matter? Ann Oncol. 2011;22(2):484–5. doi:10.1093/annonc/mdq704.

    Article  CAS  PubMed  Google Scholar 

  97. Kjersem JB, Ikdahl T, Guren T, Skovlund E, Sorbye H, Hamfjord J, et al. Let-7 miRNA-binding site polymorphism in the KRAS 3′UTR; colorectal cancer screening population prevalence and influence on clinical outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin +/− cetuximab. BMC Cancer. 2012;12:534. doi:10.1186/1471-2407-12-534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ruzzo A, Graziano F, Vincenzi B, Canestrari E, Perrone G, Galluccio N, et al. High let-7a microRNA levels in KRAS-mutated colorectal carcinomas may rescue anti-EGFR therapy effects in patients with chemotherapy-refractory metastatic disease. Oncologist. 2012;17(6):823–9. doi:10.1634/theoncologist.2012-0081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saridaki Z, Weidhaas JB, Lenz HJ, Laurent-Puig P, Jacobs B, De Schutter J, et al. A let-7 microRNAbinding site polymorphism in KRAS predicts improved outcome in patients with metastatic colorectal cancer treated with salvage cetuximab/panitumumab monotherapy. Clin Cancer Res. 2014;20(17):4499–510. doi:10.1158/1078-0432.CCR-14-0348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pan XM, Sun RF, Li ZH, Guo XM, Zhang Z, Qin HJ, et al. A let-7 KRAS rs712 polymorphism increases colorectal cancer risk. Tumour Biol. 2014;35(1):831–5. doi:10.1007/s13277-013-1114-3.

    Article  CAS  PubMed  Google Scholar 

  101. Song FJ, Chen KX. Single-nucleotide polymorphisms among microRNA: big effects on cancer. Chin J Cancer. 2011;30(6):381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zanetti KA, Haznadar M, Welsh JA, Robles AI, Ryan BM, McClary AC, et al. 3′-UTR and functional secretor haplotypes in mannose-binding lectin 2 are associated with increased colon cancer risk in African Americans. Cancer Res. 2012;72(6):1467–77. doi:10.1158/0008-5472.CAN-11-3073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schmit SL, Gollub J, Shapero MH, Huang SC, Rennert HS, Finn A, et al. MicroRNA polymorphisms and risk of colorectal cancer. Cancer Epidemiol Biomark Prev. 2015;24(1):65–72. doi:10.1158/1055-9965.EPI-14-0219.

    Article  CAS  Google Scholar 

  104. Langevin SM, Christensen BC. Let-7 microRNA-binding-site polymorphism in the 3′UTR of KRAS and colorectal cancer outcome: a systematic review and meta-analysis. Cancer Med. 2014;3(5):1385–95. doi:10.1002/cam4.279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rusinov V, Baev V, Minkov IN, Tabler M. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res. 2005;33(Web Server issue):W696–700. doi:10.1093/nar/gki364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, et al. DIANAmicroT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res. 2009;37(Web Server issue):W273–6. doi:10.1093/nar/gkp292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi:10.1016/j.cell.2004.12.035.

    Article  CAS  PubMed  Google Scholar 

  108. Bhattacharya A, Ziebarth JD, Cui Y. PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res. 2014;42(Database issue):D86–91. doi:10.1093/nar/gkt1028.

    Article  CAS  PubMed  Google Scholar 

  109. Ning S, Zhao Z, Ye J, Wang P, Zhi H, Li R, et al. SNP@lincTFBS: an integrated database of polymorphisms in human LincRNA transcription factor binding sites. PLoS One. 2014;9(7):e103851. doi:10.1371/journal.pone.0103851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Gong J, Liu W, Zhang J, Miao X, Guo AY. lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res. 2015;43(Database issue):D181–6. doi:10.1093/nar/gku1000.

    Article  PubMed  Google Scholar 

  111. Ning S, Zhao Z, Ye J, Wang P, Zhi H, Li R, et al. LincSNP: a database of linking disease-associated SNPs to human large intergenic non-coding RNAs. BMC Bioinform. 2014;15:152. doi:10.1186/1471-2105-15-152.

    Article  CAS  Google Scholar 

  112. Bhartiya D, Jalali S, Ghosh S, Scaria V. Distinct patterns of genetic variations in potential functional elements in long noncoding RNAs. Hum Mutat. 2014;35(2):192–201. doi:10.1002/humu.22472.

    Article  CAS  PubMed  Google Scholar 

  113. Ning S, Wang P, Ye J, Li X, Li R, Zhao Z, et al. A global map for dissecting phenotypic variants in human lincRNAs. Eur J Hum Genet. 2013;21(10):1128–33. doi:10.1038/ejhg.2013.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Barenboim M, Zoltick BJ, Guo Y, Weinberger DR. MicroSNiPer: a web tool for prediction of SNP effects on putative microRNA targets. Hum Mutat. 2010;31(11):1223–32. doi:10.1002/humu.21349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44(5):839–47. doi:10.1016/j.jbi.2011.05.002.

    Article  CAS  PubMed  Google Scholar 

  116. Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics. 2012;13:44. doi:10.1186/1471-2164-13-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33(1):254–63. doi:10.1002/humu.21641.

    Article  CAS  PubMed  Google Scholar 

  118. Thomas LF, Saito T, Saetrom P. Inferring causative variants in microRNA target sites. Nucleic Acids Res. 2011;39(16):e109. doi:10.1093/nar/gkr414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Deveci M, Catalyurek M, Toland AE. mrSNP: software to detect SNP effects on microRNA binding. BMC Bioinform. 2014;15:73. doi:10.1186/1471-2105-15-73.

    Article  Google Scholar 

  120. Jin Y, Chen Z, Liu X, Zhou X. Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol. 2013;936:117–27. doi:10.1007/978-1-62703-083-0_10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Landi D, Moreno V, Guino E, Vodicka P, Pardini B, Naccarati A, et al. Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: a review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutat Res. 2011;717(1–2):109–15. doi:10.1016/j.mrfmmm.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  122. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol. 2004;2(11):e363. doi:10.1371/journal.pbio.0020363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500. doi:10.1038/ng1536.

    Article  CAS  PubMed  Google Scholar 

  124. Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Pers Med. 2014;7:173–91. doi:10.2147/PGPM.S61693.

    PubMed  PubMed Central  Google Scholar 

  125. Muniategui A, Pey J, Planes FJ, Rubio A. Joint analysis of miRNA and mRNA expression data. Brief Bioinform. 2013;14(3):263–78. doi:10.1093/bib/bbs028.

    Article  CAS  PubMed  Google Scholar 

  126. Lagana A, Forte S, Giudice A, Arena MR, Puglisi PL, Giugno R et al. miRo: a miRNA knowledge base. Database (Oxford). 2009;2009:bap008. doi:10.1093/database/bap008.

    Google Scholar 

  127. Giles CB, Girija-Devi R, Dozmorov MG, Wren JD. mirCoX: a database of miRNA-mRNA expression correlations derived from RNA-seq meta-analysis. BMC Bioinform. 2013;14 Suppl 14:S17. doi:10.1186/1471-2105-14-S14-S17.

    Article  Google Scholar 

  128. Hua Y, Duan S, Murmann AE, Larsen N, Kjems J, Lund AH, et al. miRConnect: identifying effector genes of miRNAs and miRNA families in cancer cells. PLoS One. 2011;6(10):e26521. doi:10.1371/journal.pone.0026521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kumar V, Westra HJ, Karjalainen J, Zhernakova DV, Esko T, Hrdlickova B, et al. Human diseaseassociated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet. 2013;9(1):e1003201. doi:10.1371/journal.pgen.1003201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li L, Sun R, Liang Y, Pan X, Li Z, Bai P, et al. Association between polymorphisms in long noncoding RNA PRNCR1 in 8q24 and risk of colorectal cancer. J Exp Clin Cancer Res. 2013;32:104. doi:10.1186/1756-9966-32-104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61. doi:10.1101/gr.152942.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chu H, Xia L, Qiu X, Gu D, Zhu L, Jin J, et al. Genetic variants in noncoding PIWI-interacting RNA and colorectal cancer risk. Cancer. 2015;121(12):2044–52. doi:10.1002/cncr.29314.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Internal Grant Agency of the Ministry of Health of the Czech Republic (AZV MZ 15-26535A) and Czech Science Foundation (GA15-08239S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Vodicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vodicka, P., Pardini, B., Vymetalkova, V., Naccarati, A. (2016). Polymorphisms in Non-coding RNA Genes and Their Targets Sites as Risk Factors of Sporadic Colorectal Cancer. In: Slaby, O., Calin, G. (eds) Non-coding RNAs in Colorectal Cancer. Advances in Experimental Medicine and Biology, vol 937. Springer, Cham. https://doi.org/10.1007/978-3-319-42059-2_7

Download citation

Publish with us

Policies and ethics