Skip to main content
  • 1609 Accesses

Abstract

BW = f s/(2 OSR). As this equation indicates, wideband ΣΔ ADCs having bandwidths in the hundreds of MHz require clock frequencies in the GHz range even to obtain a relatively low OSR of ten. In such low-OSR systems, MASH architectures achieve better power efficiency than traditional single-loop ΣΔ ADCs. Nanometer CMOS process technologies enable continuous-time ΣΔ ADCs operating at GHz clock frequencies. However, the combination of continuous-time and low-OSR at a GHz clock frequency presents new challenges. In this paper, ΣΔ ADCs including the traditional single-loop and MASH, are reviewed in the context of wideband wireless applications with out-of-band blockers. A unique circuit block in continuous-time MASH, a continuous-time residue generation circuit, is discussed in detail. Two wideband MASH implementations in a 28 nm CMOS process are compared and their properties and performances are discussed based on the architectural differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Schreier, G.C. Temes, Understanding Delta-Sigma Data Converters (Wiley-IEEE Press, New York, 2005)

    Google Scholar 

  2. T. Caldwell, D. Alldred, R. Schreier, H. Shibata, Y. Dong, Advances in high-speed continuous-time ΣΔ modulators, in 2014 IEEE Proceedings of the Custom Integrated Circuits Conference, pp. 1–8, 2014

    Google Scholar 

  3. M. Bolatkale, L.J. Breems, R. Rutten, K.A.A. Makinwa, A 4GHz continuous-time ADC with 70dB DR and 74dBFS THD in 125MHz BW. IEEE J. Solid State Circuits 46(12), 2857–2868 (2011)

    Article  Google Scholar 

  4. H. Shibata, R. Schreier, W. Yang, A. Shaikh, D. Paterson, T. Caldwell, D. Alldred, P.W. Lai, A DC-to-1GHz tunable RF ADC achieving DR=74dB and BW=150MHz at f 0=450MHz using 550mW. IEEE J. Solid State Circuits 47(12), 2888–2897 (2012)

    Article  Google Scholar 

  5. Y. Dong, W. Yang, R. Schreier, A. Sheikholeslami, S. Korrapati, A continuous-time 0-3 MASH ADC achieving 88dB DR with 53MHz BW in 28nm CMOS. IEEE J. Solid State Circuits 49(12), 2868–2877 (2014)

    Article  Google Scholar 

  6. Y. Dong, J. Zhao, W. Yang, T. Caldwell, H. Shibata, R. Schreier, Q. Meng, J. Silva, D. Paterson, J. Gealow, A 930mW 69dB DR 465MHz BW CT 1-2 MASH ADC in 28nm CMOS, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 278–279, Feb 2016

    Google Scholar 

  7. R. Schreier, Delta Sigma Toolbox, Matlab Central, http://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox, 2016

  8. K. Philips, P. Nuijten, R. Roovers, A. Roermund, F. Chavero, M. Pallarés, A. Torralba, A continuous-time ΣΔ ADC with increased immunity to interferers. IEEE J. Solid State Circuits 39, 2170–2177 (2005)

    Article  Google Scholar 

  9. L.J. Breems, R. Rutten, G. Wetzker, A cascaded continuous-time modulator with 67-dB dynamic range in 10MHz bandwidth. IEEE J. Solid State Circuits 39(12), 2152–2160 (2004)

    Article  Google Scholar 

  10. L.J. Breems, R. Rutten, R. Veldhoven, G. Weide, A 56mW continuous-time quadrature cascaded ΣΔ modulator with 77dB DR in a near Zero-IF 20MHz band. IEEE J. Solid State Circuits 42(12), 2696–2705 (2007)

    Article  Google Scholar 

  11. Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa, T. Yoshitome, A 16-bit oversampling A-to-D conversion technology using triple integration noise shaping. IEEE J. Solid State Circuits SC-22(6), 921–979 (1987)

    Article  Google Scholar 

  12. J. Steensgaard, High-Performance Data Converters, Chapter 9, Ph.D. Thesis, The Technical University of Denmark, Lyngby, Denmark, 1999

    Google Scholar 

  13. A. Gharbiya, D.A. Johns, A 12-bit 3.125MHz bandwidth 0-3 MASH Delta-Sigma modulator. IEEE J. Solid State Circuits 44(7), 2010–2018 (2009)

    Article  Google Scholar 

  14. Y. Chae, K. Souri, K.A.A. Makinwa, A 6.3μW 20bit incremental zoom-ADC with 6ppm INL and 1μV offset. IEEE J. Solid State Circuits 48(12), 3019–3027 (2013)

    Article  Google Scholar 

  15. B. Gonen, F. Sebastiano, R. Veldhoven, K.A.A. Makinwa, A 1.65mW 0.16mm2 dynamic zoom-ADC with 107.6dB DR in 20kHz BW, in IEEE International Solid-State Circuits Conference Digest Technical Papers, pp. 282–283, Feb 2016

    Google Scholar 

  16. D. Gubbins, B. Lee, P.K. Hanumolu, U. Moon, Continuous-time input pipeline ADC. IEEE J. Solid State Circuits 45(8), 1456–1468 (2010)

    Article  Google Scholar 

  17. D. Yoon, S. Ho, H. Lee, A continuous-time sturdy-MASH ΣΔ modulator in 28nm CMOS. IEEE J. Solid State Circuits 50(12), 2880–2890 (2015)

    Article  Google Scholar 

  18. A. Thomsen, D. Kasha, W. Lee, A five stage chopper stabilized instrumentation amplifier using feedforward compensation, in Symposium on VLSI Circuits Digest Technical Papers, pp. 220–223, 1998

    Google Scholar 

  19. P. DeWit, G. Gielen, Complementary DAC topology for reduced output impedance dependency and improved dynamic performance. Electron. Lett. 48(17), 1039–1041 (2012)

    Article  Google Scholar 

  20. B. Murmann, ADC Performance Survey 1997-2015. [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Shibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shibata, H., Dong, Y., Yang, W., Schreier, R. (2017). Continuous-Time MASH Architectures forWideband DSMs. In: Baschirotto, A., Harpe, P., Makinwa, K. (eds) Wideband Continuous-time ΣΔ ADCs, Automotive Electronics, and Power Management. Springer, Cham. https://doi.org/10.1007/978-3-319-41670-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41670-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41669-4

  • Online ISBN: 978-3-319-41670-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics