Skip to main content

Thermal Management Modeling in Thermo-Chemical Heat Storage Systems

  • Chapter
  • First Online:
A Thermochemical Heat Storage System for Households

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In thermal and chemical engineering, chemical reactors are designed vessels where chemical reactions can take place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajzoul, T.: Analyse et optimisation des transferts thermiques dans les réacteurs solide-gaz (Doctorate/Ph.D). University Abdelmalek Essaadji, Morocco (1993)

    Google Scholar 

  • Azoumah, Y.K.: Conception optimale, par approche constructal, de reseaux arborescents de transferts couplés pour reacteurs thermochimiques (Doctorate/Ph.D). Université de Perpignan, France (2005)

    Google Scholar 

  • Azoumah, Y., Neveu, P., Mazet, N.: Optimal design of thermochemical reactors based on constructal approach. AIChE J. 53, 1257–1266 (2007). doi:10.1002/aic.11152

    Article  Google Scholar 

  • Balasubramanian, G., Ghommem, M., Hajj, M.R., Wong, W.P., Tomlin, J.A., Puri, I.K.: Modeling of thermochemical energy storage by salt hydrates. Int. J. Heat Mass Transf. 53, 5700–5706 (2010). doi:10.1016/j.ijheatmasstransfer.2010.08.012

    Article  MATH  Google Scholar 

  • Bejan, A.: Constructal theory: from thermodynamic and geometric optimisation to predicting shape in nature. Energy Convers. Manage. 39, 1705–1718 (1998). doi:10.1016/S0196-8904(98)00054-5

    Article  Google Scholar 

  • Cadavid, Y., Amell, A., Cadavid, F.: Heat transfer model in recuperative compact heat exchanger type honeycomb: experimental and numerical analysis. Appl. Therm. Eng. 57, 50–56 (2013). doi:10.1016/j.applthermaleng.2013.03.034

    Article  Google Scholar 

  • Carman, P.C.: Flow of gases through porous media. Academic Press, New-York, USA (1956)

    MATH  Google Scholar 

  • Cascetta, M., Cau, G., Puddu, P., Serra, F.: Numerical investigation of a packed bed thermal energy storage system with different heat transfer fluids. Energy Procedia 45, 598–607 (2014). doi:10.1016/j.egypro.2014.01.064

    Article  Google Scholar 

  • Chen, N.H., Othmer, D.F.: New generalized equation for gas diffusion coefficient. J. Chem. Eng. Data 7, 37–41 (1962)

    Article  Google Scholar 

  • Comsol: COMSOL Multiphysics. COMSOL http://www.comsol.de/release/4.4, Göttingen, Germany (2014)

  • Duval, F., Fichot, F., Quintard, M.: A local thermal non-equilibrium model for two-phase flows with phase-change in porous media. Int. J. Heat Mass Transf. 47, 613–639 (2004). doi:10.1016/j.ijheatmasstransfer.2003.07.005

    Article  MATH  Google Scholar 

  • Elsarrag, E., Ali, E.E.M., Jain, S.: Design guidelines and performance study on a structured packed liquid desiccant air-conditioning system. HVACR Res. 11, 319–337 (2005). doi:10.1080/10789669.2005.10391140

    Google Scholar 

  • Froment, G.F., Bischoff, K., De Wilde, J.: Chemical reactor analysis and design 3rd edn. G. Froment, et al., (Wiley, 2011) BBS crekjkdijfiu (WWW Document). Scribd. http://www.scribd.com/doc/138537099/Chemical-Reactor-Analysis-and-Design-3rd-Ed-G-Froment-Et-Al-Wiley-2011-BBS (2011). Accessed 29 Jan 2014)

  • Huang, H.: Modeling of gas–solid chemisorption in chemical heat pumps. Sep. Purif. Technol. 34, 191–200 (2004). doi:10.1016/S1383-5866(03)00192-8

    Article  Google Scholar 

  • Ishitobi, H., Uruma, K., Takeuchi, M., Ryu, J., Kato, Y.: Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps. Appl. Therm. Eng. 50, 1639–1644 (2013). doi:10.1016/j.applthermaleng.2011.07.020

    Article  Google Scholar 

  • Jacobi, A.M., Shah, R.K.: Heat transfer surface enhancement through the use of longitudinal vortices: A review of recent progress. Generation and Structure of Vortical Flows for Heat Transfer Enhancement. Exp. Therm. Fluid Sci. 11, 295–309 (1995). doi:10.1016/0894-1777(95)00066-U

    Article  Google Scholar 

  • Jamshidi, N., Farhadi, M., Ganji, D.D., Sedighi, K.: Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers. Appl. Therm. Eng. 51, 644–652 (2013). doi:10.1016/j.applthermaleng.2012.10.008

    Article  Google Scholar 

  • Janković, B., Mentus, S., Janković, M.: A kinetic study of the thermal decomposition process of potassium metabisulfite: estimation of distributed reactivity model. J. Phys. Chem. Solids 69, 1923–1933 (2008). doi:10.1016/j.jpcs.2008.01.013

    Article  Google Scholar 

  • Jörimann, U., Riesen, R.: Kinetics - A versatile method for predicting reaction behavior. Webinar - Mettler Toledo, Germany (2009)

    Google Scholar 

  • Kato, Y.: Chemical energy conversion technologies for efficient energy use. In: Paksoy, H.Ö. (ed.) Thermal Energy Storage for Sustainable Energy Consumption, NATO Science Series, pp. 377–391. Springer, Netherlands (2007)

    Chapter  Google Scholar 

  • Kato, Y., Takahashi, F., Watanabe, A., Yoshizawa, Y.: Thermal performance of a packed bed reactor of a chemical heat pump for cogeneration. Chem. Eng. Res. Des. 78, 745–748 (2000). doi:10.1205/026387600527743

    Article  Google Scholar 

  • Lahmidi, H., Mauran, S., Goetz, V.: Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems. Sol. Energy 80, 883–893 (2006). doi:10.1016/j.solener.2005.01.014

    Article  Google Scholar 

  • Legay, M.: Intensification des processus de transfert de chaleur par ultrasons, vers un nouveau type d’échangeur de chaleur : l’échangeur vibrant (Doctorate/Ph.D). Université de Grenoble, Grenoble, France (2012)

    Google Scholar 

  • Li, Q., Flamant, G., Yuan, X., Neveu, P., Luo, L.: Compact heat exchangers: a review and future applications for a new generation of high temperature solar receivers. Renew. Sus-tain. Energy Rev. 15, 4855–4875 (2011). doi:10.1016/j.rser.2011.07.066

    Article  Google Scholar 

  • Longuet, B., Gillard, P.: Experimental investigation on the heterogeneous kinetic process of the low thermal decomposition of ammonium perchlorate particles. Propellants Explos. Pyrotech. 34, 59–71 (2009). doi:10.1002/prep.200700203

    Article  Google Scholar 

  • Longuet, B., Pascaud, J.M., Gillard, P.: Chemical reactions thermal transfers and gas diffusion in an energetic material. In: Excerpt from the Proceedings of the COMSOL Users Conference. Presented at the COMSOL Users Conference, Paris, France, p. 5 (2006)

    Google Scholar 

  • Lu, H.-B., Mazet, N., Spinner, B.: Modelling of gas-solid reaction—coupling of heat and mass transfer with chemical reaction. Chem. Eng. Sci. 51, 3829–3845 (1996)

    Article  Google Scholar 

  • Luo, L.: Heat and mass transfer intensification and shape optimisation—A Multi-scale Approach, 1st edn. Springer, London; Nantes, France (2013)

    Google Scholar 

  • Luo, Z., Wang, C., Xiao, G., Ni, M., Cen, K.: Simulation and experimental study on honeycomb-ceramic thermal energy storage for solar thermal systems. Appl. Therm. Eng. (2014) doi:10.1016/j.applthermaleng.2014.07.053

    Google Scholar 

  • Lu, T.J.: Heat transfer efficiency of metal honeycombs. Int. J. Heat Mass Transf. 42, 2031–2040 (1999). doi:10.1016/S0017-9310(98)00306-8

    Article  MATH  Google Scholar 

  • Mao, S., Love, N., Leanos, A., Rodriguez-Melo, G.: Correlation studies of hydrodynamics and heat transfer in metal foam heat exchangers. Appl. Therm. Eng. 71, 104–118 (2014). doi:10.1016/j.applthermaleng.2014.06.035

    Article  Google Scholar 

  • Mauran, S., Lahmidi, H., Goetz, V.: Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kWh by a solid/gas reaction. Sol. Energy 82, 623–636 (2008). doi:10.1016/j.solener.2008.01.002

    Article  Google Scholar 

  • Mazet, N., Amouroux, M., Spinner, B.: Analysis and experimental study of the transformation of a non-isothermal solid/gas reacting medium. Chem. Eng. Commun. 99, 155–174 (1991). doi:10.1080/00986449108911585

    Article  Google Scholar 

  • Mbaye, M., Aidoun, Z., Valkov, V., Legault, A.: Analysis of chemical heat pumps (CHPS): basic concepts and numerical model description. Appl. Therm. Eng. 18, 131–146 (1998)

    Article  Google Scholar 

  • McMahon, M., Wallace, O.: What Is a Chemical Reactor? (WWW Document). wiseGEEK. http://www.wisegeek.com/what-is-a-chemical-reactor.htm (2003). Accessed 29 Jan 2014)

  • Michel, B.: Procédé thermochimique pour le stockage intersaisonnier de l’énergie solaire : modélisation multi-échelles et expérimentation d’un prototype sous air humide (Doctorate/Ph.D.). Université de Perpignan, Perpignan, France (2012)

    Google Scholar 

  • Michel, B., Mazet, N., Neveu, P.: Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance. Appl. Energy 129, 177–186 (2014a). doi:10.1016/j.apenergy.2014.04.073

    Article  Google Scholar 

  • Michel, B., Neveu, P., Mazet, N.: Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications. Energy 72, 702–716 (2014b). doi:10.1016/j.energy.2014.05.097

    Article  Google Scholar 

  • Neveu, P., Castaing-Lasvignottes, J.: Development of a numerical sizing tool for a solid-gas thermochemical transformer—I. Impact of the microscopic process on the dynamic behaviour of a solid-gas reactor. Appl. Therm. Eng. 17, 501–518 (1997). doi:10.1016/S1359-4311(96)00065-8

    Article  Google Scholar 

  • Neveu, P., Tescari, S., Aussel, D., Mazet, N.: Combined constructal and exergy optimisation of thermochemical reactors for high temperature heat storage. Energy Convers. Manage. 71, 186–198 (2013). doi:10.1016/j.enconman.2013.03.035

    Article  Google Scholar 

  • Nowak, W., Arthkamp, J., Weddeling, K.: BHKW - Grundlagen, seite 11 (2010)

    Google Scholar 

  • N’Tsoukpoe, K.E., Restuccia, G., Schmidt, T., Py, X.: The size of sorbents in low pressure sorption or thermochemical energy storage processes. Energy 77, 983–998 (2014). doi:10.1016/j.energy.2014.10.013

    Article  Google Scholar 

  • Olives, R., Mauran, S.: A highly conductive porous medium for solid–gas reactions: effect of the dispersed phase on the thermal tortuosity. Transp. Porous Media 43, 377–394 (2001)

    Article  Google Scholar 

  • Oró, E., Chiu, J., Martin, V., Cabeza, L.F.: Comparative study of different numerical models of packed bed thermal energy storage systems. Appl. Therm. Eng. 50, 384–392 (2013). doi:10.1016/j.applthermaleng.2012.07.020

    Article  Google Scholar 

  • Pardo, P., Anxionnaz-Minvielle, Z., Rougé, S., Cognet, P., Cabassud, M.: Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage. Sol. Energy 107, 605–616 (2014). doi:10.1016/j.solener.2014.06.010

    Article  Google Scholar 

  • Prabhanjan, D.G., Raghavan, G.S.V., Rennie, T.J.: Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger. Int. Commun. Heat Mass Transf. 29, 185–191 (2002). doi:10.1016/S0735-1933(02)00309-3

    Article  Google Scholar 

  • Raju, M., Kumar, S.: Modeling of a helical coil heat exchanger for sodium alanate based on-board hydrogen storage system. In: Excerpt from the Proceedings of the Comsol Confernce. Presented at the COMSOL Multiphysics Conference, Boston, USA, p. 8 (2010)

    Google Scholar 

  • Rambaud, G.: Problématique des transferts en milieu poreux réactif déformable pour procédés de rafraîchissement solaire (Doctorate/Ph.D.). Université de Perpignan, France (2009)

    Google Scholar 

  • Schaube, F., Wörner, A., Tamme, R.: High temperature thermochemical heat storage for concentrated solar power using gas-solid reactions. J. Sol. Energy Eng. 133, 031006–100000 (2011). doi:10.1115/1.4004245

    Article  Google Scholar 

  • Shapiro, A.H., 1953. The dynamics and thermodynamics of compressible fluid flow. Ronald Press Co. (ed.) Ronald Press Co., USA

    Google Scholar 

  • Techniques de l’ingénieur: Echangeurs de chaleur à contact direct, © Techniques de l’Ingénieur, traité Génie énergétique. Techniques de l’ingénieur, France (1999)

    Google Scholar 

  • Vyazovkin, S.: Thermal analysis. Anal. Chem. 74, 2749–2762 (2002). doi:10.1021/ac020219r

    Article  Google Scholar 

  • Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., Sbirrazzuoli, N.: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011). doi:10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  • Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I.: The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units (1982)

    Google Scholar 

  • Wen, D., Ding, Y.: Heat transfer of gas flow through a packed bed. Chem. Eng. Sci. 61, 3532–3542 (2006). doi:10.1016/j.ces.2005.12.027

    Article  Google Scholar 

  • Yutaka, A., Hiroshi, N., Faghri, M.: Developing laminar flow and heat transfer in the entrance region of regular polygonal ducts. Int. J. Heat Mass Transf. 31, 2590–2593 (1988). doi:10.1016/0017-9310(88)90186-X

    Article  Google Scholar 

  • Zhang, L., Hihara, E., Matsuoka, F., Dang, C.: Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant. Int. J. Heat Mass Transf. 53, 2856–2863 (2010). doi:10.1016/j.ijheatmasstransfer.2010.02.012

    Article  Google Scholar 

  • Zhang, S., Xiao, R., Zheng, W.: Comparative study between fluidized-bed and fixed-bed operation modes in pressurized chemical looping combustion of coal. Appl. Energy 130, 181–189 (2014). doi:10.1016/j.apenergy.2014.05.049

    Google Scholar 

  • Zheng, L., Wu, D., Pan, B., Wang, Y., Sun, B.: Experimental investigation and numerical simulation of heat-transfer properties of metallic honeycomb core structure up to 900 °C. Appl. Therm. Eng. 60, 379–386 (2013). doi:10.1016/j.applthermaleng.2013.07.014

    Article  Google Scholar 

  • Zondag, A., Kalbasenka, A., van Essen, M.: First studies in reactor concepts for Thermochemical Storage. In: Of the Eurosun 2008, 1st Interna- Tional Conference on Solar Heating, Cooling and Buildings. Presented at the EUROSUN 2008, Proceedings of Eurosun 2008, Lisbon, Portugal, p. 6 (2008)

    Google Scholar 

  • Zondag, H., Kikkert, B., Smeding, S., de Boer, R., Bakker, M.: Prototype thermochemical heat storage with open reactor system. Appl. Energy 109, 360–365 (2013). doi:10.1016/j.apenergy.2013.01.082

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Fopah Lele .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fopah Lele, A. (2016). Thermal Management Modeling in Thermo-Chemical Heat Storage Systems. In: A Thermochemical Heat Storage System for Households. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41228-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41228-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41227-6

  • Online ISBN: 978-3-319-41228-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics