Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

I feel particularly lucky to have been working on my Ph.D. at such an exciting time for cosmology. With the fantastic results of the Planck mission [1], our picture of the Universe and its history has become much clearer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A brief introduction to the theory of inflation will be presented in Sect. 4.1.

  2. 2.

    In the rest of this thesis, unless specified, we take \(c=1\).

  3. 3.

    This results from the invariance of the matter action under coordinate transformations, as we will see later in Sect. 2.5.3.

  4. 4.

    1 parsec (pc)\(=3.1 \times 10^{16} \text {m}=3.3\) lightyears (ly).

  5. 5.

    Note that by definition of a cosmological constant, it does not have perturbations: \(\delta _\Lambda =0\).

  6. 6.

    According to Planck [22], CDM represents \(\sim {85}\,\%\) of the matter content.

  7. 7.

    This assumes the validity of the equivalence principle. This is no longer true otherwise, see [36, 37].

  8. 8.

    For simplicity, I will assume a flat spatial metric.

  9. 9.

    I am thankful to Emmanuel Schaan for a great explanation of CMB lensing.

References

  1. Planck Collaboration Collabaration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results. 1502.01582

    Google Scholar 

  2. EUCLID Collaboration Collaboration, R. Laureijs et al., Euclid Definition Study Report. 1110.3193

    Google Scholar 

  3. LSST Science, LSST Project Collaboration, P.A. Abell et al., LSST Science Book, Version 2.0. 0912.0201

    Google Scholar 

  4. S. Dodelson, Modern Cosmology (Academic Press, Amsterdam, 2003)

    Google Scholar 

  5. M. Trodden, S.M. Carroll, TASI lectures: introduction to cosmology, in Progress in String Theory. Proceedings, Summer School, TASI 2003, Boulder, USA, 2–27 June 2003, pp. 703–793 (2004). astro-ph/0401547

    Google Scholar 

  6. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006). hep-th/0603057

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. D. Baumann, Lecture notes on cosmology. http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf

  8. D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576 (1996). astro-ph/9605054

    Article  ADS  Google Scholar 

  9. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, NY, 1972)

    Google Scholar 

  10. R.M. Wald, General Relativity (Chicago University Press, Chicago, IL, 1984)

    Book  MATH  Google Scholar 

  11. S.M. Carroll, Lecture Notes on General Relativity. gr-qc/9712019

    Google Scholar 

  12. A. Friedman, Über die krümmung des raumes. Z. Phys. 10(1), 377–386 (1922)

    Article  ADS  Google Scholar 

  13. G. Lemaitre, The expanding universe. Mon. Not. Roy. Astron. Soc. 91, 490–501 (1931)

    Article  ADS  MATH  Google Scholar 

  14. H.P. Robertson, Kinematics and world-structure. Astrophys. J. 82, 284–301 (1935)

    Article  ADS  MATH  Google Scholar 

  15. A.G. Walker, On Milne’s theory of world-structure, in Proceedings of the London Mathematical Society, vol. s2-42, no. 1, pp. 90–127 (1937)

    Google Scholar 

  16. N. Suzuki, et al., The hubble space telescope cluster supernova survey: V. Improving the dark energy constraints above \(z>1\) and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012). 1105.3470

    Google Scholar 

  17. M.M. Phillips, The absolute magnitudes of type IA supernovae. Astrophys. J. 413, L105–L108 (1993)

    Article  ADS  Google Scholar 

  18. Supernova Search Team Collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). astro-ph/9805201

    Google Scholar 

  19. Supernova Cosmology Project Collaboration, S. Perlmutter et al., Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999). astro-ph/9812133

    Google Scholar 

  20. Supernova Cosmology Project Collaboration, R.A. Knop et al., New constraints on Omega(M), Omega(lambda), and w from an independent set of eleven high-redshift supernovae observed with HST. Astrophys. J. 598, 102 (2003). astro-ph/0309368

    Google Scholar 

  21. W. Hu, N. Sugiyama, J. Silk, The physics of microwave background anisotropies. Nature 386, 37–43 (1997). astro-ph/9604166

    Article  ADS  Google Scholar 

  22. Planck Collaboration Collaboration, P. Ade et al., Planck 2015 results. XIII. Cosmological parameters. 1502.01589

    Google Scholar 

  23. J. Khoury, Les Houches Lectures on Physics Beyond the Standard Model of Cosmology. 1312.2006

    Google Scholar 

  24. A. Padilla, Lectures on the Cosmological Constant Problem. 1502.05296

    Google Scholar 

  25. C.-P. Ma, E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J. 455, 7–25 (1995). astro-ph/9506072

    Article  ADS  Google Scholar 

  26. F. Bernardeau, S. Colombi, E. Gaztanaga, R. Scoccimarro, Large scale structure of the universe and cosmological perturbation theory. Phys. Rep. 367, 1–248 (2002). astro-ph/0112551

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. V. Springel et al., Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature 435, 629–636 (2005). astro-ph/0504097

    Article  ADS  Google Scholar 

  28. Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation. 1502.02114

    Google Scholar 

  29. SDSS-III Collaboration, S. Alam et al., The eleventh and twelfth data releases of the sloan digital sky survey: final data from SDSS-III. Astrophys. J. Suppl. 219(1), 12 (2015). 1501.00963

    Google Scholar 

  30. CFHTLenS Collaboration, H. Hildebrandt, An overview of the completed Canada-France-Hawaii telescope lensing survey (CFHTLenS), in Proceedings, 49th Rencontres de Moriond on Cosmology, pp. 87–94 (2014). 1406.1379

    Google Scholar 

  31. J. Green et al., Wide-Field InfraRed Survey Telescope (WFIRST) Final Report. 1208.4012

    Google Scholar 

  32. N. Dalal, O. Doré, D. Huterer, A. Shirokov, The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects. Phys. Rev. D 77, 123514 (2008). 0710.4560

    Google Scholar 

  33. V. Assassi, D. Baumann, D. Green, M. Zaldarriaga, Renormalized halo bias. JCAP 1408, 056 (2014). 1402.5916

    Google Scholar 

  34. V. Assassi, D. Baumann, F. Schmidt, Galaxy bias and primordial non-gaussianity. JCAP 1512(12), 043 (2015). 1510.03723

    Google Scholar 

  35. SDSS Collaboration, M. Tegmark et al., Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D 74, 123507 (2006). astro-ph/0608632

    Google Scholar 

  36. P. Creminelli, J. Gleyzes, L. Hui, M. Simonović, F. Vernizzi, Single-field consistency relations of large scale structure. Part III: test of the equivalence principle. JCAP 1406, 009 (2014). 1312.6074

    Google Scholar 

  37. J. Gleyzes, D. Langlois, M. Mancarella, F. Vernizzi, Effective theory of dark energy at redshift survey scales. JCAP 1602(02), 056 (2016). 1509.02191

    Google Scholar 

  38. N. Kaiser, Clustering in real space and in redshift space. Mon. Not. Roy. Astron. Soc. 227, 1–27 (1987)

    Article  ADS  Google Scholar 

  39. B.A. Reid et al., The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering. Mon. Not. Roy. Astron. Soc. 426, 2719 (2012). 1203.6641

    Google Scholar 

  40. D. Munshi, P. Valageas, L. Van Waerbeke, A. Heavens, Cosmology with weak lensing surveys. Phys. Rep. 462, 67–121 (2008). astro-ph/0612667

    Article  ADS  Google Scholar 

  41. P. Schneider, C. Seitz, Steps towards nonlinear cluster inversion through gravitational distortions. I. Basic considerations and circular clusters. Astron. Astrophys. 294, 411 (1995). astro-ph/9407032

    ADS  Google Scholar 

  42. M. Kilbinger, Cosmology with cosmic shear observations: a review. Rep. Prog. Phys. 78, 086901 (2015). 1411.0115

    Google Scholar 

  43. W. Hu, T. Okamoto, Mass reconstruction with cmb polarization. Astrophys. J. 574, 566–574 (2002). astro-ph/0111606

    Article  ADS  Google Scholar 

  44. T. Okamoto, W. Hu, CMB lensing reconstruction on the full sky. Phys. Rev. D 67, 083002 (2003). astro-ph/0301031

    Article  ADS  Google Scholar 

  45. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363–384 (1974)

    Article  MathSciNet  Google Scholar 

  46. BICEP2 Collaboration Collaboration, P. Ade et al., Detection of \(B\)-mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett. 112(24), 241101 (2014). 1403.3985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Gleyzes .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gleyzes, J. (2016). Introduction. In: Dark Energy and the Formation of the Large Scale Structure of the Universe. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41210-8_1

Download citation

Publish with us

Policies and ethics