Skip to main content

Topics in Evolutinary Algorithms

  • Chapter
  • First Online:
Search and Optimization by Metaheuristics
  • 3358 Accesses

Abstract

This chapter continues to introduce topics on EAs. Convergence of EAs is first analyzed by using scheme theorem, building-block hypothesis, and then by using finite and infinite population models. Various parallel implementations of EAs are then described in detail. Some other associated topics including coevolution and fitness approximation are finally introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbarzadeh-T M-R, Davarynejad M, Pariz N. Adaptive fuzzy fitness granulation for evolutionary optimization. Int J Approx Reason. 2008;49:523–38.

    Article  Google Scholar 

  2. Alba E. Parallel evolutionary algorithms can achieve superlinear performance. Inf Process Lett. 2002;82(1):7–13.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alba E, Dorronsoro B. The exploration/exploitation tradeoff in dynamic cellular evolutionary algorithms. IEEE Trans Evol Comput. 2005;9(2):126–42.

    Article  Google Scholar 

  4. Alba E, Tomassini M. Parallelism and evolutionary algorithms. IEEE Trans Evol Comput. 2002;6(5):443–62.

    Article  Google Scholar 

  5. Al-Madi NA. De Jong’s sphere model test for a human community based genetic algorithm model (HCBGA). Int J Adv Compu Sci Appl. 2014;5(1):166–172.

    Google Scholar 

  6. Al-Madi NA, Khader AT. A social based model for genetic algorithms. In: Proceedings of the 3rd international conference on information technology (ICIT), Amman, Jordan, May 2007. p. 23–27

    Google Scholar 

  7. Al-Naqi A, Erdogan AT, Arslan T. Adaptive three-dimensional cellular genetic algorithm for balancing exploration and exploitation processes. Soft Comput. 2013;17:1145–57.

    Article  Google Scholar 

  8. Arora R, Tulshyan R, Deb K. Parallelization of binary and realcoded genetic algorithms on GPU using CUDA. In: Proceedings of IEEE world congress on computational intelligence, Barcelona, Spain, July 2010. p. 3680–3687.

    Google Scholar 

  9. Arsuaga-Rios M, Vega-Rodriguez MA. Multiobjective energy optimization in grid systems from a brain storming strategy. Soft Comput. 2015;19:3159–72.

    Google Scholar 

  10. Bai H, Ouyang D, Li X, He L, Yu H. MAX-MIN ant system on GPU with CUDA. In: Proceedings of the IEEE 4th international conference on innovative computing, information and control (ICICIC), Kaohsiung, Taiwan, Dec 2009. p. 801–204.

    Google Scholar 

  11. Barabasi AL, Freeh VW, Jeong H, Brockman JB. Parasitic computing. Nature. 2001;412(6850):894–7.

    Article  Google Scholar 

  12. Barbosa HJC. A genetic algorithm for min-max problems. In: Proceedings of the 1st international conference on evolutionary computation and applications, Moscow, Russia, 1996. p. 99–109.

    Google Scholar 

  13. Beyer H-G. An alternative explanation for the manner in which genetic algorithms operate. Biosystems. 1997;41(1):1–15.

    Article  Google Scholar 

  14. Biles J. Genjam: a genetic algorithm for generating jazz solos. In: Proceedings of international computer music conference, Arhus, Denmark, 1994. p. 131–137.

    Google Scholar 

  15. Bongard J, Zykov V, Lipson H. Resilient machines through continuous self-modeling. Science. 2006;314(5802):1118–21.

    Article  Google Scholar 

  16. Bozejko W, Smutnicki C, Uchronski M. Parallel calculating of the goal function in metaheuristics using GPU. In: Proceedings of the 9th international conference on computational science, Baton Rouge, LA, USA, May 2009, vol. 5544 of Lecture Notes in Computer Science. Berlin: Springer; 2009. p. 1014–2023.

    Google Scholar 

  17. Brownlee AEI, McCall JAW, Zhang Q. Fitness modeling with Markov networks. IEEE Trans Evol Comput. 2013;17(6):862–79.

    Article  Google Scholar 

  18. Calazan RM, Nedjah N, De Macedo Mourelle L. Parallel GPU-based implementation of high dimension particle swarm optimizations. In: Proceedings of the IEEE 4th Latin American symposium on circuits and systems (LASCAS), Cusco, Peru, Feb 2013. p. 1–4.

    Google Scholar 

  19. Caldwell C, Johnston VS. Tracking a criminal suspect through “face-space” with a genetic algorithm. In: Proceedings of the 4th international conference on genetic algorithms, San Diego, CA, USA, July 1991. San Diego, CA: Morgan Kaufmann; 1991. p. 416–421

    Google Scholar 

  20. Candan C, Dreo J, Saveant P, Vidal V. Parallel divide-and-evolve: experiments with Open-MP on a multicore machine. In: Proceedings of GECCO, Dublin, Ireland, July 2011. p. 1571–1578.

    Google Scholar 

  21. Cerf R. Asymptotic convergence of genetic algorithms. Adv Appl Probab. 1998;30(2):521–50.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cheang SM, Leung KS, Lee KH. Genetic parallel programming: design and implementation. Evol Comput. 2006;14(2):129–56.

    Article  Google Scholar 

  23. Collet P, Lutton E, Schoenauer M, Louchet J. Take it EASEA. In: Proceedings of the 6th international conference on parallel problem solving from nature (PPSN VI), Paris, France, Sept 2000, vol. 1917 of Lecture Notes in Computer Science. London: Springer; 2000. p. 891–901

    Google Scholar 

  24. Collins RJ, Jefferson DR. Selection in massively parallel genetic algorithms. In: Belew RK, Booker LB, editors. Proceedings of the 4th international conference on genetic algorithms, San Diego, CA, USA, July 1991. San Diego, CA: Morgan Kaufmann; 1991. p. 249–256.

    Google Scholar 

  25. Corno F, Reorda M, Squillero G. The selfish gene algorithm: a new evolutionary optimization strategy. In: Proceedings of the 13th annual ACM symposium on applied computing (SAC), Atlanta, Georgia, USA, 1998. p. 349–355.

    Google Scholar 

  26. Cramer AM, Sudhoff SD, Zivi EL. Evolutionary algorithms for minimax problems in robust design. IEEE Trans Evol Comput. 2009;13(2):444–53.

    Article  Google Scholar 

  27. Dawkins R. The selfish gene. Oxford: Oxford University Press; 1989.

    Google Scholar 

  28. De Jong K. An analysis of the behavior of a class of genetic adaptive systems. PhD Thesis, University of Michigan, Ann Arbor, 1975.

    Google Scholar 

  29. de Veronese PL, Krohling RA. Differential evolution algorithm on the GPU with C-CUDA. In: Proceedings of IEEE world congress on computational intelligence, Barcelona, Spain, July 2010. p. 1878–1884.

    Google Scholar 

  30. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th symposium on operating system design and implementation (OSDI), San Francisco, CA, 2004. p. 137–147.

    Google Scholar 

  31. Droste S, Jansen T, Wegener I. On the analysis of the (1+1) evolutionary algorithm. Theor Comput Sci. 2002;276:51–81.

    Article  MathSciNet  MATH  Google Scholar 

  32. Du K-L, Swamy MNS. Neural networks and statistical learning. London: Springer; 2014.

    Book  MATH  Google Scholar 

  33. Eiben AE, Aarts EHL, Van Hee KM. Global convergence of genetic algorithms: a Markov chain analysis. In: Proceedings of the 1st workshop on parallel problem solving from nature (PPSN I), Dortmund, Germany, Oct 1990. Berlin: Springer; 1991. p. 3–12.

    Google Scholar 

  34. Emmerich MTM, Giannakoglou KC, Naujoks B. Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans Evol Comput. 2006;10(4):421–39.

    Article  Google Scholar 

  35. Ewald G, Kurek W, Brdys MA. Grid implementation of a parallel multiobjective genetic algorithm for optimized allocation of chlorination stations indrinking water distribution systems: Chojnice case study. IEEE Trans Syst Man Cybern Part C. 2008;38(4):497–509.

    Google Scholar 

  36. Fok K-L, Wong T-T, Wong M-L. Evolutionary computing on consumer graphics hardware. IEEE Intell Syst. 2007;22:69–78.

    Article  Google Scholar 

  37. Folino G, Pizzuti C, Spezzano G. A scalable cellular implementation of parallel genetic programming. IEEE Trans Evol Comput. 2003;7(1):37–53.

    Article  MATH  Google Scholar 

  38. Ge H, Sun L, Yang X, Yoshida S, Liang Y. Cooperative differential evolution with fast variable interdependence learning and cross-cluster mutation. Appl Soft Comput. 2015;36:300–14.

    Article  Google Scholar 

  39. Goh C-K, Tan KC. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans Evol Comput. 2009;13(1):103–27.

    Article  Google Scholar 

  40. Goldberg DE. Genetic algorithms in search, optimization, and machine learning. Reading, MA, USA: Addison-Wesley; 1989.

    MATH  Google Scholar 

  41. Goldberg DE, Deb K, Korb B. Messy genetic algorithms: motivation, analysis, and first results. Complex Syst. 1989;3:493–530.

    MathSciNet  MATH  Google Scholar 

  42. Gong Y-J, Chen W-N, Zhan Z-H, Zhang J, Li Y, Zhang Q, Li J-J. Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl Soft Comput. 2015;34:286–300.

    Article  Google Scholar 

  43. Grefenstette JJ. Deception considered harmful. In: Whitley LD, editor. Foundations of genetic algorithms, vol. 2. Morgan Kaufmann: San Mateo, CA; 1993. p. 75–91.

    Google Scholar 

  44. Hastings EJ, Guha RK, Stanley KO. Interactive evolution of particle systems for computer graphics and animation. IEEE Trans Evol Comput. 2009;13(2):418–32.

    Article  Google Scholar 

  45. Herrmann JW. A genetic algorithm for minimax optimization problems. In: Proceedings of the congress on evolutionary computation (CEC), Washington DC, July 1999, vol. 2. p. 1099–1103.

    Google Scholar 

  46. He J, Yao X. Drift analysis and average time complexity of evolutionary algorithms. Artif Intell. 2001;127:57–85.

    Article  MathSciNet  MATH  Google Scholar 

  47. He J, Yao X. From an individual to a population: an analysis of the first hitting time of population-based evolutionary algorithms. IEEE Trans Evol Comput. 2002;6(5):495–511.

    Article  Google Scholar 

  48. He J, Yao X. Analysis of scalable parallel evolutionary algorithms. In: Proceedings of the IEEE congress on evolutionary computation (CEC), Vancouver, BC, Canada, July 2006. p. 120–127.

    Google Scholar 

  49. He J, Yu X. Conditions for the convergence of evolutionary algorithms. J Syst Arch. 2001;47(7):601–12.

    Article  Google Scholar 

  50. Holland J. Adaptation in natural and artificial systems. Ann Arbor, Michigan: University of Michigan Press; 1975.

    Google Scholar 

  51. Holland JH. Building blocks, cohort genetic algorithms and hyperplane-defined functions. Evol Comput. 2000;8(4):373–91.

    Article  Google Scholar 

  52. Horn J. Finite Markov chain analysis of genetic algorithms with niching. In: Proceedings of the 5th international conference on genetic algorithms, Urbana, IL, July 1993. San Francisco, CA: Morgan Kaufmann Publishers; 1993. p. 110–117

    Google Scholar 

  53. Jansen T, De Jong KA, Wegener I. On the choice of the offspring population size in evolutionary algorithms. Evol Comput. 2005;13(4):413–40.

    Article  Google Scholar 

  54. Jansen T, Wegener I. The analysis of evolutionary algorithms—a proof that crossover really can help. Algorithmica. 2002;33:47–66.

    Article  MathSciNet  MATH  Google Scholar 

  55. Jin H, Frumkin M, Yan J.The OpenMP implementation of NAS parallel benchmarks and its performance. MRJ Technology Solutions, NASA Contract NAS2-14303, Moffett Field, CA, Oct 1999.

    Google Scholar 

  56. Jin Y, Sendhoff B. Reducing fitness evaluations using clustering techniques and neural network ensembles. In: Proceedings of genetic and evolutionary computation, Seattle, WA, USA, July 2004. p. 688–699.

    Google Scholar 

  57. Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. J Global Optim. 1998;13(4):455–92.

    Article  MathSciNet  MATH  Google Scholar 

  58. Kim H-S, Cho S-B. An efficient genetic algorithms with less fitness evaluation by clustering. In: Proceedings of IEEE congress on evolutionary computation (CEC), Seoul, Korea, May 2001. p. 887–894.

    Google Scholar 

  59. Koza JR. Genetic programming: on the programming of computers by means of natural selection. Cambridge, MA: MIT Press; 1992.

    MATH  Google Scholar 

  60. Krawiec K, Bhanu B.Coevolution and linear genetic programming for visual learning. In: Proceedings of genetic and evolutionary computation conference (GECCO), Chicago, Illinois, USA, vol. 2723 of Lecture Notes of Computer Science. Berlin: Springer; 2003. p. 332–343

    Google Scholar 

  61. Krohling RA, Coelho LS. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Trans Syst Man Cybern Part B. 2006;36(6):1407–16.

    Article  Google Scholar 

  62. Lassig J, Sudholt D. Design and analysis of migration in parallel evolutionary algorithms. Soft Comput. 2013;17:1121–44.

    Article  MATH  Google Scholar 

  63. Lastra M, Molina D, Benitez JM. A high performance memetic algorithm for extremely high-dimensional problems. Inf Sci. 2015;293:35–58.

    Article  Google Scholar 

  64. Lehman J, Stanley KO. Abandoning objectives: evolution through the search for novelty alone. Evol Comput. 2011;19(2):189–223.

    Article  Google Scholar 

  65. Lehre PK, Yao X. On the impact of mutation-selection balance on the runtime of evolutionary algorithms. IEEE Trans Evol Comput. 2012;16(2):225–41.

    Article  Google Scholar 

  66. Leung Y, Gao Y, Xu Z-B. Degree of population diversity: a perspective on premature convergence in genetic algorithms and its Markov chain analysis. IEEE Tran Neural Netw. 1997;8(5):1165–76.

    Article  Google Scholar 

  67. Liu J, Zhong W, Jiao L. A multiagent evolutionary algorithm for constraint satisfaction problems. IEEE Trans Syst Man Cybern Part B. 2006;36(1):54–73.

    Article  Google Scholar 

  68. Liu J, Zhong W, Jiao L. A multiagent evolutionary algorithm for combinatorial optimization problems. IEEE Trans Syst Man Cybern Part B. 2010;40(1):229–40.

    Article  Google Scholar 

  69. Mallipeddi R, Lee M. An evolving surrogate model-based differential evolution algorithm. Appl Soft Comput. 2015;34:770–87.

    Article  Google Scholar 

  70. Manderick B, Spiessens P. Fine-grained parallel genetic algorithms. In: Schaffer JD, editor. Proceedings of the 3rd international conference on genetic algorithms, Fairfax, Virginia, USA, June 1989. San Mateo, CA: Morgan Kaufmann; 1989. p. 428–433.

    Google Scholar 

  71. Merelo-Guervos JJ. Fluid evolutionary algorithms. In: Proceedings of IEEE congress on evolutionary computation, Barcelona, Spain, July 2010. p. 1–8.

    Google Scholar 

  72. Meri K, Arenas MG, Mora AM, Merelo JJ, Castillo PA, Garcia-Sanchez P, Laredo JLJ. Cloud-based evolutionary algorithms: an algorithmic study. Natural Comput. 2013;12(2):135–47.

    Article  MathSciNet  Google Scholar 

  73. Meyer-Spradow J, Loviscach J. Evolutionary design of BRDFs. In: Chover M, Hagen H, Tost D, editors. Eurographics 2003 short paper proceedings. Spain: Granada; 2003. p. 301–6.

    Google Scholar 

  74. Muhlenbein H. Parallel genetic algorithms, population genetics and combinatorial optimization. In: Schaffer JD, editor. Proceedings of the 3rd international conference on genetic algorithms, Fairfax, Virginia, USA, June 1989. San Mateo, CA: Morgan Kaufman; 1989. p. 416–421.

    Google Scholar 

  75. Muhlenbein H, Schomisch M, Born J. The parallel genetic algorithm as a function optimizer. In: Proceedings of the 4th international conference on genetic algorithms, San Diego, CA, July 1991. p. 271–278.

    Google Scholar 

  76. Munawar A, Wahib M, Munawar A, Wahib M. Theoretical and empirical analysis of a GPU based parallel Bayesian optimization algorithm. In: Proceedings of IEEE international conference on parallel and distributed computing, applications and technologies, Higashi Hiroshima, Japan, Dec 2009. p. 457–462.

    Google Scholar 

  77. Nara K, Takeyama T, Kim H. A new evolutionary algorithm based on sheep flocks heredity model and its application to scheduling problem. In: Proceedings of IEEE international conference on systems, man, and cybernetics, Tokyo, Japan, Oct 1999, vol. 6. p. 503–508.

    Google Scholar 

  78. Niwa T, Iba H. Distributed genetic programming: empirical study and analysis. In: Proceedings of the 1st annual conference on genetic programming, Stanford University, CA, USA, July 1996. p. 339–344.

    Google Scholar 

  79. Nix AE, Vose MD. Modeling genetic algorithms with markov chains. Ann Math Artif Intell. 1992;5:79–88.

    Article  MathSciNet  MATH  Google Scholar 

  80. Omidvar MN, Li X, Mei Y, Yao X. Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput. 2014;18(3):378–93.

    Article  Google Scholar 

  81. Ong YS, Nair PB, Kean AJ. Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J. 2003;41(4):687–96.

    Article  Google Scholar 

  82. O’Reilly UM, Oppacher F. The troubling aspects of a building-block hypothesis for genetic programming. In: Whitley LD, Vose MD, editors. Foundations of genetic algorithm 3. San Francisco, CA: Morgan Kaufmann; 1995. p. 73–88

    Google Scholar 

  83. Panait L. Theoretical convergence guarantees for cooperative coevolutionary algorithms. Evol Comput. 2010;18(4):581–615.

    Article  Google Scholar 

  84. Poli R. Parallel distributed genetic programming. In: Come D, Dorigo M, Glover F, editors. New ideas in optimization. New York: McGraw-Hill; 1999.

    Google Scholar 

  85. Poli R. Exact schema theory for GP and variable-length GAs with one-point crossover. Genetic Progr Evol Mach. 2001;2:123–63.

    Article  MATH  Google Scholar 

  86. Poli R, Langdon WB. Schema theory for genetic programming with one-point crossover and point mutation. Evol Comput. 2001;6(3):231–52.

    Article  Google Scholar 

  87. Poli R, McPhee NF. General schema theory for genetic programming with subtree-swapping crossover: part i. Evol Comput. 2003;11(1):53–66.

    Article  Google Scholar 

  88. Poli R, McPhee NF. General schema theory for genetic programming with subtree-swapping crossover: part ii. Evol Comput. 2003;11(2):169–206.

    Article  Google Scholar 

  89. Potter MA, de Jong KA. A cooperative coevolutionary approach to function optimization. In: Proceedings of the 3rd conference on parallel problem solving from nature (PPSN III), Jerusalem, Isreal, Oct 1994. Berlin: Springer; 1994. p. 249–257.

    Google Scholar 

  90. Potter MA, De Jong KA. Cooperative coevolution: an architecture for evolving coadapted subcomponenets. Evol Comput. 2000;8(1):1–29.

    Article  Google Scholar 

  91. Qi X, Palmieri F. Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space, part 1: basic properties of selection and mutation. IEEE Trans Neural Netw. 2004;5(1):102–19.

    Google Scholar 

  92. Ratle A. Accelerating the convergence of evolutionary algorithms by fitness landscape approximation. In: Parallel problem solving from nature (PPSN V), 1998. p. 87–96.

    Google Scholar 

  93. Regis RG, Shoemaker CA. Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Trans Evol Comput. 2004;8(5):490–505.

    Article  Google Scholar 

  94. Reza A, Vahid Z, Koorush Z. MLGA: a multilevel cooperative genetic algorithm. In: Proceedings of the IEEE 5th international conference on bio-inspired computing: theories and applications (BIC-TA), Changsha, China, Sept 2010. p. 271–277.

    Google Scholar 

  95. Rosin C, Belew R. New methods for competitive coevolution. Evol Comput. 1997;15(1):1–29.

    Article  Google Scholar 

  96. Rudolph G. Convergence analysis of canonical genetic algorithm. IEEE Trans Neural Netw. 1994;5(1):96–101.

    Article  Google Scholar 

  97. Rudolph G. Finite Markov chain results in evolutionary computation: a tour d’horizon. Fundamenta Informaticae. 1998;35:67–89.

    MathSciNet  MATH  Google Scholar 

  98. Rudolph G. Self-adaptive mutations may lead to premature convergence. IEEE Transa Evol Comput. 2001;5:410–4.

    Article  Google Scholar 

  99. Salami M, Hendtlass T. A fast evaluation strategy for evolutionary algorithms. Appl Soft Comput. 2003;2(3):156–73.

    Article  Google Scholar 

  100. Sastry K, Goldberg DE, Pelikan M. Don’t evaluate, inherit. In: Proceedings of genetic evolutionary computation conference (GECCO), San Francisco, CA, USA, July 2001. p. 551–558.

    Google Scholar 

  101. Schmidt MD, Lipson H. Coevolution of fitness predictors. IEEE Trans Evol Comput. 2008;12(6):736–49.

    Article  Google Scholar 

  102. Schutte JF, Reinbolt JA, Fregly BJ, Haftka RT, George AD. Parallel global optimization with the particle swarm algorithm. Int J Numer Methods Eng. 2004;61(13):2296–315.

    Article  MATH  Google Scholar 

  103. Shi Y, Krohling RA. Co-evolutionary particle swarm optimization to solve min-max problems. In: Proceedings of the congress on evolutionary computation (CEC), Honolulu, HI, May 2002, vol. 2. p. 1682–1687.

    Google Scholar 

  104. Smith RE, Dike BA, Stegmann SA. Fitness inheritance in genetic algorithms. In: Proceedings of ACM symposium on applied computing, Nashville, Tennessee, USA, 1995. p. 345–350.

    Google Scholar 

  105. Smith J, Vavak F. Replacement strategies in steady state genetic algorithms: static environments. In: Banzhaf W, Reeves C, editors. Foundations of genetic algorithms, vol. 5. CA: Morgan Kaufmann; 1999. p. 219–233.

    Google Scholar 

  106. Stephens CR, Poli R. Coarse-grained dynamics for generalized recombination. IEEE Trans Evol Comput. 2007;11(4):541–57.

    Article  Google Scholar 

  107. Stephens CR, Waelbroeck H. Schemata evolution and building blocks. Evol Comput. 1999;7:109–29.

    Article  Google Scholar 

  108. Sudholt D. A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans Evol Comput. 2013;17(3):418–35.

    Article  Google Scholar 

  109. Sudholt D. How crossover speeds up building-block assembly in genetic algorithms. Evol Comput 2016.

    Google Scholar 

  110. Szumlanski SR, Wu AS, Hughes CE. Conflict resolution and a framework for collaborative interactive evolution. In: Proceedings of the 21st national conference on artificial intelligence (AAAI), Boston, Massachusetts, USA, July 2006. p. 512–517.

    Google Scholar 

  111. Takagi H. Interactive evolutionary computation: fusion of the capacities of EC optimization and human evaluation. Proc IEEE. 2001;89(9):1275–96.

    Article  Google Scholar 

  112. Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN. Parallel differential evolution. In: Proceedings of the IEEE congress on evolutionary computation, Portland, OR, USA, June 2004. p. 2023–2029.

    Google Scholar 

  113. Thomsen R, Rickers P, Krink T. A religion-based spatial model for evolutionary algorithms. In: Proceedings of the 6th international conference on parallel problem solving from nature (PPSN VI), Paris, France, September 2000, vol. 1917 of Lecture Notes in Computer Science. London: Springer; 2000. p. 817–826.

    Google Scholar 

  114. van den Bergh F, Engelbrecht A. A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput. 2004;8(3):225–39.

    Article  Google Scholar 

  115. Vose M, Liepins G. Punctuated equilibria in genetic search. Complex Syst. 1991;5:31–44.

    MathSciNet  MATH  Google Scholar 

  116. Weber M, Neri F, Tirronen V. Distributed differential evolution with explorative-exploitative population families. Genetic Progr Evol Mach. 2009;10:343–471.

    Article  Google Scholar 

  117. Whitley D, Starkweather T. GENITOR II: a distributed genetic algorithm. J Exp Theor Artif Intell. 1990;2(3):189–214.

    Article  Google Scholar 

  118. Whitley D, Yoo NW. Modeling simple genetic algorithms for permutation problems. In: Whitley D, Vose M, editors. Foundations of genetic algorithms, vol. 3. San Mateo, CA: Morgan Kaufmann; 1995. p. 163–184.

    Google Scholar 

  119. Wickramasinghe W, van Steen M, Eiben A. Peer-to-peer evolutionary algorithms with adaptive autonomous selection. In: Proceedings of the 9th annual conference on genetic and evolutionary computation (GECCO), London, U.K., July 2007. p. 1460–1467.

    Google Scholar 

  120. Wong M-L, Cui G. Data mining using parallel multiobjective evolutionary algorithms on graphics hardware. In: Sobrevilla P, editors. Proceedings of IEEE world congress on computational intelligence, Barcelona, Spain, July 2010. p. 3815–3822.

    Google Scholar 

  121. Wong M-L, Wong T-T, Fok K-L. Parallel evolutionary algorithms on graphics processing unit. In: Proceedings of the IEEE congress on evolutionary computation, Edinburgh, UK, Sept 2005. p. 2286–2293.

    Google Scholar 

  122. Xu L, Zhang F. Parallel particle swarm optimization for attribute reduction. In: Proceedings of the 8th ACIS international conference on software engineering, artificial intelligence, networking, and parallel/distributed computing, Qingdao, China, July 2007, vol. 1. p. 770–775.

    Google Scholar 

  123. Yang Z, Tang K, Yao X. Large scale evolutionary optimization using cooperative coevolution. Inf Sci. 2008;178(15):2985–99.

    Article  MathSciNet  MATH  Google Scholar 

  124. Yao X, Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw. 1997;8(3):694–713.

    Article  MathSciNet  Google Scholar 

  125. Yuen SY, Cheung BKS. Bounds for probability of success of classical genetic algorithm based on Hamming distance. IEEE Trans Evol Comput. 2006;10(1):1–18.

    Article  Google Scholar 

  126. Yu Y, Zhou Z-H. A new approach to estimating the expected first hitting time of evolutionary algorithms. Artif Intell. 2008;172(15):1809–32.

    Article  MathSciNet  MATH  Google Scholar 

  127. Zhang C, Chen J, Xin B. Distributed memetic differential evolution with the synergy of Lamarckian and Baldwinian learning. Appl Soft Comput. 2013;13(5):2947–59.

    Article  Google Scholar 

  128. Zhong W, Liu J, Xue M, Jiao L. A multiagent genetic Algorithm for global numerical optimization. IEEE Trans Syst Man Cybern Part B. 2004;34(2):1128–41.

    Article  Google Scholar 

  129. Zhou Z, Ong YS, Nair PB, Keane AJ, Lum KY. Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Trans Syst Man Cybern Part C. 2007;37(1):66–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Lin Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Du, KL., Swamy, M.N.S. (2016). Topics in Evolutinary Algorithms. In: Search and Optimization by Metaheuristics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-41192-7_8

Download citation

Publish with us

Policies and ethics