Skip to main content

Nanotechnology and Its Drug Delivery Applications

  • Chapter
  • First Online:
Natural Polymer Drug Delivery Systems

Abstract

Drug delivery is attractive approach for medicine field, as more potent and specific drugs are being developed. With the integration of nanotechnology, so-called smart drug-delivery systems integrate biosensing functionalities which sustain independently in vivo reaction control that resulting in part unique features of the term Nanomedicine. Nanotechnology is one of the very frontiers of science today. Current polymeric research is dominantly participating in the advancement of nanotechnology by offering the controlled release of therapeutic agents in constant doses over prolong periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. Many biomaterials can be used to this end, offering extensive chemical diversity and the potential for further modification using nanoparticles. Conventional methods of drug delivery present several disadvantages, mainly due to off-target effects that may originate severe side and toxic effect to healthy tissues. New drug delivery systems based on nanoscale devices showing new and improved properties and developed as promising solutions for achieving desirable therapeutic efficacy. Here, we provide a broad overview of novel nanoparticle based drug delivery systems, covering its innovations, applications and commercialization systems using both natural and synthetic polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santamaria A. Historical overview of nanotechnology and nanotoxicology. Methods Mol Biol. 2012;926:1–12.

    Article  CAS  Google Scholar 

  2. Drexler E. Engines of creation: the coming era of nanotechnology. Anchor Library of Science, 1987.

    Google Scholar 

  3. Feynman R. There’s plenty of room at the bottom. In: Gilbert HD, editor. Miniaturization. New York: Reinhold; 2004. p. 282–96.

    Google Scholar 

  4. Taniguchi N. On the basic concept of ‘Nano-technology’. In: Proceedings of the international conference on production engineering, Tokyo, Part II. Japan Society of Precision Engineering, 1974. p. 5–10, 10.

    Google Scholar 

  5. Curl RF, Smalley RE, Kroto HW, O'Brien S, Heath JR. How the news that we were not the first to conceive of soccer ball C60 got to us. J Mol Graph Model. 2001;19(2):185–6.

    Article  CAS  Google Scholar 

  6. Davis T. Biography of Louis E. Brus. Proc Natl Acad Sci U S A. 2005;102(5):1277–9.

    Article  CAS  Google Scholar 

  7. Drexler KE. Unbounding the future: the nanotechnology revolution. New York: Harper Collins; 1991.

    Google Scholar 

  8. Drexler KE. Nanosystems: molecular machinery, manufacturing, and computation. New York: Wiley; 1992.

    Google Scholar 

  9. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  10. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  CAS  Google Scholar 

  11. Murray CB, Norris DJ, Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–15.

    Article  CAS  Google Scholar 

  12. Foresight institute first formen prize in nanotechnology. http://www.foresight.org/FI/1997Feynman.html.

  13. Foresight institute. http://www.foresight.org/nano/history.html.

  14. Seeman NC. Structural DNA nanotechnology: an overview. Methods Mol Biol. 2005;303:143–66.

    CAS  Google Scholar 

  15. Foresight Update 26, NASA Unit putting major resources into computational nanotechnology. https://www.foresight.org/Updates/Update26/Update26.1.html, by Lew Phelps.

  16. Webster TJ. IJN’s second year is now a part of nanomedicine history. Int J Nanomed. 2007;2(1):1–2.

    Article  Google Scholar 

  17. Nanalyze. The World’s Oldest and Biggest Nanotechnology Company, 2014. http://www.nanalyze.com/2014/06/the-worlds-oldest-and-biggest-nanotechnology-company.

  18. Seeman NC. From genes to machines: DNA nanomechanical devices. Trends Biochem Sci. 2005;30(3):119–25.

    Article  CAS  Google Scholar 

  19. Mao C, Sun W, Shen Z, Seeman NC. A nanomechanical device based on the B-Z transition of DNA. Nature. 1999;397:144–6.

    Article  CAS  Google Scholar 

  20. Kateb B, Heiss JD. The textbook of nanoneuroscience and nanoneurosurgery. Boca Raton, FL: CRC Press; 2013. p. 4.

    Book  Google Scholar 

  21. Ginger DS, Zhang H, Mirkin CA. The evolution of dip-pen nanolithography. Angew Chem Int Ed. 2003;43(1):30–45.

    Article  CAS  Google Scholar 

  22. Freitas RA. Nanomedicine, Vol. I: Basic capabilities. Georgetown, TX: Landes Bioscience; 1999.

    Google Scholar 

  23. Paradise J, Wolf SM, Ramachandran G, Kokkoli E, Hall R, Kuzma J. Developing oversight frameworks for nanobiotechnology. Minn J L Sci Tech. 2008;9(1):399–416.

    Google Scholar 

  24. Roco MC, Mirkin CA, Hersam MC. Nanotechnology research directions for societal needs in 2020: retrospective. New York: Springer; 2011. p. 12.

    Book  Google Scholar 

  25. Lieber C. Nanowires take the prize. Marer Today. 2002;5(2):48.

    Google Scholar 

  26. Nikalje AP. Nanotechnology and its applications in medicine. Med Chem. 2015;5:081–9.

    Article  Google Scholar 

  27. Gupta SRN. Advances in molecular nanotechnology from premodern to modern era. Int J Mater Sci Eng. 2014;2:2.

    Google Scholar 

  28. Wonders S. Endless frontiers: a review of the national nanotechnology initiative. National Academies Press. http://www.ncbi.nlm.nih.gov/books/NBK220670/.

  29. Nanoscience and nanotechnologies: opportunities and uncertainties, 2004. https://royalsociety.org/topics-policy/publications/2004/nanoscience-nanotechnologies/.

  30. Guston DH. Encyclopedia of Nanoscience and Society. SAGE Publications, 2010, Social Science. p. 598.

    Google Scholar 

  31. http://www.foresight.org/nano/history.html.

  32. Rothemund PWK, Papadakis N. Winfree E algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2004;2(12):e424. doi:10.1371/journal.pbio.0020424.

    Article  Google Scholar 

  33. Peterson C. Nanotechnology: from Feynman to the grand challenge of molecular manufacturing. IEEE Technology and Society, Winter 2004.

    Google Scholar 

  34. Peterson C. Molecular nanotechnology: the next industrial revolution. IEEE Computer, 2000.

    Google Scholar 

  35. Regis E, Brown L. Nano: the emerging science of nanotechnology, 1995.

    Google Scholar 

  36. Peterson C, Wired H. Nanotechnology: from concept to R&D Goal, 1995.

    Google Scholar 

  37. Peterson C. Nanotechnology: evolution of the concept. In: Krummenacker M, Lewis J, editors. Prospects in nanotechnology: toward molecular manufacturing. New York: Wiley; 1995.

    Google Scholar 

  38. Geim A, Konstantin. The Nobel Prize in Physics 2010. Novoselov. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html.

  39. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

    Article  CAS  Google Scholar 

  40. De Jong WH, Geertsma RE, Roszek B. Possible risks for human health. Report 265001002/2005. Bilthoven, The Netherlands: National Institute for Public Health and the Environment (RIVM); 2005. Nanotechnology in medical applications.

    Google Scholar 

  41. European Science Foundation. Policy Briefing (ESF), ESF Scientific Forward Look on Nanomedicine IREG Strasbourg, France, 2005. ISBN: 2-912049-520.

    Google Scholar 

  42. European Technology Platform on Nanomedicine. Vision paper and basis for a strategic research agenda for nanomedicine. European Commission Luxembourg, Office for Official Publications of the European Commission, 2005. ISBN: 92-894-9599-5.

    Google Scholar 

  43. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–71.

    Article  CAS  Google Scholar 

  44. The Royal Society and The Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties, London, UK, 2004.

    Google Scholar 

  45. Kipp JE. The role of solid nanoparticle technology in the parental delivery of poorly water-soluble drugs. Int J Pharm. 2004;284:109–22.

    Article  CAS  Google Scholar 

  46. Cascone MG, Lazzeri L, Carmignani C, et al. Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med. 2002;13:523–6.

    Article  CAS  Google Scholar 

  47. Baran ET, Özer N, Hasirci V. In vivo half life of nanoencapsulated l-asparaginase. J Mater Sci Mater Med. 2002;13:1113–21.

    Article  CAS  Google Scholar 

  48. Oberdörster G. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal Toxicol. 1996;8:73–89.

    Google Scholar 

  49. Donaldson K, Stone V, Clouter A, et al. Ultrafine particles. Occup Environ Med. 2001;58:211–1651.

    Article  CAS  Google Scholar 

  50. Donaldson K, Stone V, Tran CL, et al. Nanotoxicology. Occup Environ Med. 2004;61:727–2852.

    Article  CAS  Google Scholar 

  51. Donaldson K, Stone V. Current hypotheses on the mechanism of toxicity of ultrafine particles. Ann Ist Super Sanita. 2003;39:405–10.

    CAS  Google Scholar 

  52. Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol. 2004;4:521–31.

    Article  CAS  Google Scholar 

  53. Donaldson K, Tran L, Jimenez LA, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2005;2:10.

    Article  CAS  Google Scholar 

  54. Granum B, Lovik M. The effect of particles on allergic immune responses. Toxicol Sci. 2002;65:7–17.

    Article  CAS  Google Scholar 

  55. LaVan DA, McGuire T, Langer R. Small scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21:1184–91.

    Article  CAS  Google Scholar 

  56. Borm PJ, Muller-Schulte D. Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine. 2006;1:235–49.

    Article  CAS  Google Scholar 

  57. Gibaud S, Demoy M, Andreux JP, et al. Cells involved in the capture of nanoparticles in hematopoietic organs. J Pharm Sci. 1996;85:944–50.

    Article  CAS  Google Scholar 

  58. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target specific nanoparticles: theory and practice. Pharmacol Rev. 2001;53:283–318.

    CAS  Google Scholar 

  59. Demoy M, Gibaud S, Andreux JP, et al. Splenic trapping of nanoparticles: complementary approaches for in situ studies. Pharm Res. 1997;14:463–8.

    Article  CAS  Google Scholar 

  60. Bazile D, Prud’Homme C, Bassoullet M-T, et al. Stealth PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84:493–8.

    Article  CAS  Google Scholar 

  61. Peracchia MT, Fattal E, Desmaele D, et al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release. 1999;60:121–8.

    Article  CAS  Google Scholar 

  62. Niidome T, Yamagata M, Okamoto Y, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114:343–7.

    Article  CAS  Google Scholar 

  63. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  CAS  Google Scholar 

  64. Seki J, Sonoke S, Saheki A, et al. A nanometer lipid emulsion, lipid nano-sphere (LNS), as a parenteral drug carrier for passive drug targeting. Int J Pharm. 2004;273:75–83.

    Article  CAS  Google Scholar 

  65. Saez A, Guzman M, Molpeceres J, et al. Freeze-drying of polycaprolactone and poly(d,l-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm. 2000;50:379–87.

    Article  CAS  Google Scholar 

  66. Fishbein I, Chorny M, Banai S, et al. Formulation and delivery mode affect disposition and activity of tyrphostin-loaded nanoparticles in the rat carotid model. Arterioscler Thromb Vasc Biol. 2001;21:1434–9.

    Article  CAS  Google Scholar 

  67. Shim J, Seok Kang H, Park WS, et al. Transdermal delivery of minoxidil with block copolymer nanoparticles. J Control Release. 2004;97:477–84.

    Article  CAS  Google Scholar 

  68. Fang C, Shi B, Pei YY, et al. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci. 2006;27:27–36.

    Article  CAS  Google Scholar 

  69. Zhang L, Hu Y, Jiang X, et al. Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. J Control Release. 2004;96:135–48.

    Article  CAS  Google Scholar 

  70. Senior J, Gregoriadis G. Is half-life of circulating small unilamellar liposomes determined by changes in their permeability? FEBS Lett. 1982;145:109–14.

    Article  CAS  Google Scholar 

  71. Na K, Lee KH, Lee DH, et al. Biodegradable thermo-sensitive nanoparticles from poly(l-lactic acid)/poly(ethylene glycol) alternating multiblock copolymer for potential anti-cancer drug carrier. Eur J Pharm Sci. 2006;27:115–22.

    Article  CAS  Google Scholar 

  72. Ricci-Junior E, Marchetti JM. Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc(II) phthalocyanine for photodynamic therapy use. J Microencapsul. 2006;23:523–38.

    Article  CAS  Google Scholar 

  73. Gomes AJ, Lunardi LO, Marchetti JM, et al. Indocyanine green nanoparticles useful for photomedicine. Photomed Laser Surg. 2006;24:514–21.

    Article  CAS  Google Scholar 

  74. Crommelin DJ, Storm G. Liposomes: from the bench to the bed. J Liposome Res. 2003;13:33–6.

    Article  Google Scholar 

  75. Metselaar JM, Storm G. Liposomes in the treatment of inflammatory disorders. Expert Opin Drug Deliv. 2005;2:465–76.

    Article  CAS  Google Scholar 

  76. Minko T, Pakunlu RI, Wang Y, et al. New generation of liposomal drugs for cancer. Anticancer Agents Med Chem. 2006;6:537–52.

    Article  CAS  Google Scholar 

  77. Win KY, Feng SS. In vitro and in vivo studies on vitamin E TPGS-emulsified poly(d,l-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials. 2006;27:2285–91.

    Article  CAS  Google Scholar 

  78. Albrecht C, Knaapen AM, Becker A, et al. The crucial role of particle surface reactivity in respirable quartz induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung. Respir Res. 2005;6:129.

    Article  CAS  Google Scholar 

  79. Tomazic-Jezic VJ, Merritt K, Umbreit TH. Significance of the type and size of biomaterial particles on phagocytosis and tissue distribution. J Biomed Mater Res. 2001;55:523–9.

    Article  CAS  Google Scholar 

  80. Xia T, Kovochich M, Brant J, et al. Comparison of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–807.

    Article  CAS  Google Scholar 

  81. Nemmar A, Hoylaerts MF, Hoet PH, et al. Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol. 2003;186:38–45.

    Article  CAS  Google Scholar 

  82. Dyer M, Hinchcliffe M, Watts P, et al. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res. 2002;19:998–1008.

    Article  CAS  Google Scholar 

  83. Edetsberger M, Gaubitzer E, Valic E, et al. Detection of nanometer-sized particles in living cells using modern fluorescence fluctuation methods. Biochem Biophys Res Commun. 2005;332:109–16.

    Article  CAS  Google Scholar 

  84. Shenoy D, Fu W, Li J, et al. Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomed. 2006;1:51–7.

    Article  CAS  Google Scholar 

  85. Konan YN, Chevallier J, Gurny R, et al. Encapsulation of p-THPP into nanoparticles: cellular uptake, subcellular localization and effect of serum on photodynamic activity. Photochem Photobiol. 2003;77:638–44.

    Article  CAS  Google Scholar 

  86. Panyam J, Zhou WZ, Prabha S, et al. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16:1217–26.

    Article  CAS  Google Scholar 

  87. Bourges JL, Gautier SE, Delie F, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci. 2003;44:3562–9.

    Article  Google Scholar 

  88. Åkerman ME, Chan WCW, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A. 2002;99:12617–21.

    Article  CAS  Google Scholar 

  89. Ballou B, Lagerholm BC, Ernst LA, et al. Non-invasive imaging of quantum dots in mice. Bioconjug Chem. 2004;15:79–86.

    Article  CAS  Google Scholar 

  90. Gupta AK, Curtis ASG. Surface modified supermagnetic nanoparticles for drug delivery: interaction studies with human firbroblasts in culture. J Mater Sci Mater Med. 2004;15:493–6.

    Article  CAS  Google Scholar 

  91. Weissenbock A, Wirth M, Gabor F. WGA grafted PLGA-nanospheres: preparation and association with Caco-2 cells. J Control Release. 2004;99:383–92.

    Article  CAS  Google Scholar 

  92. Nobs L, Buchegger F, Gurny R, et al. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin™ for active targeting. Eur J Pharm Biopharm. 2004;58:483–90.

    Article  CAS  Google Scholar 

  93. Prinzen L, Miserus R-JJHM, Dirksen A, et al. Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots. Nano Lett. 2007;7:93–100.

    Article  CAS  Google Scholar 

  94. Pardridge WM. Blood-brain barrier delivery. Drug Discov Today. 2007;12:54–61.

    Article  CAS  Google Scholar 

  95. Olivier JC, Fenart L, Chauvet R, et al. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res. 1999;16:1836–42.

    Article  CAS  Google Scholar 

  96. Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs of the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 2003;20:409–16.

    Article  CAS  Google Scholar 

  97. Koziara JM, Lockman PR, Allen DD, et al. The blood brain barrier and brain drug delivery. J Nanosci Nanotechnol. 2006;6:2712–35.

    Article  CAS  Google Scholar 

  98. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47:65–81.

    Article  CAS  Google Scholar 

  99. Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 2006;317:1246–53.

    Article  CAS  Google Scholar 

  100. Girardin F. Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci. 2006;8:311–21.

    Google Scholar 

  101. Alyautdin RN, Petrov VE, Langer K, et al. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. J Pharm Res. 1997;14:325–8.

    Article  CAS  Google Scholar 

  102. Koziara JM, Lockman PR, Allen DD, et al. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release. 2004;99:259–69.

    Article  CAS  Google Scholar 

  103. Oberdörster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437–45.

    Article  CAS  Google Scholar 

  104. Elder A, Gelein R, Silva V, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172–8.

    Article  CAS  Google Scholar 

  105. Gao X, Tao W, Lu W, et al. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27:3482–90.

    Article  CAS  Google Scholar 

  106. Court E, Daar AS, Martin E, Acharya T, Singer PA. Will Prince Charles et al. diminish the opportunities of developing countries in nanotechnology? 2004.

    Google Scholar 

  107. U.S., Indian high technology will benefit through cooperation, 2003. Available: http://newdelhi.usembassy.gov/wwwhpr0812a.htm.

  108. China’s nanotechnology patent applications rank third in world, 2003. http://www.investorideas.com/Companies/Nanotechnology/Articles/China'sNanotechnology1003,03.asp.

  109. Meridian Institute Report of the international dialogue on responsible research and development of nanotechnology, 2004.

    Google Scholar 

  110. Salamanca-Buentello F, Persad DL, Court EB, Martin DK, Daar AS, Singer PA. Nanotechnology and the developing world. PLoS Med. 2005;2(5):e97. doi:10.1371/journal.pmed.0020097.

    Article  Google Scholar 

  111. Rashidi L, Khosravi-Darani K. The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr. 2011;51(8):723–30. doi:10.1080/10408391003785417.

    Article  CAS  Google Scholar 

  112. Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol. 2004;61(3):216–20.

    Article  Google Scholar 

  113. Singhal S, Nie S, Wang MD. Nanotechnology applications in surgical oncology. Annu Rev Med. 2010;61:359–73.

    Article  CAS  Google Scholar 

  114. Saini R, Saini S, Sharma S. Nanotechnology: the future medicine. J Cutan Aesthet Surg. 2010;3(1):32–3.

    Article  Google Scholar 

  115. Lee J, Mahendra S, Alvarez PJ. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano. 2010;4(7):3580–90.

    Article  CAS  Google Scholar 

  116. Oberdörster G, Maynard A, Donaldson K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2:8.

    Article  CAS  Google Scholar 

  117. Borm PJ. Particle toxicology: from coal mining to nanotechnology. Inhal Toxicol. 2002;14:311–24.

    Article  CAS  Google Scholar 

  118. Kreyling WG, Semmler M, Möller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med. 2004;17:140–52.

    Article  CAS  Google Scholar 

  119. Felicea B, Prabhakaranc MP, Rodrígueza AP, Ramakrishnac S. Drug delivery vehicles on a nano-engineering perspective. Mater Sci Eng C. 2014;41:178–95.

    Article  CAS  Google Scholar 

  120. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces. 1999;16:1–4. 3–27.

    Article  Google Scholar 

  121. Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci. 2015;104(3):872–905.

    Article  CAS  Google Scholar 

  122. Lakkakula J, Krause RWM. Cyclodextrin-based nanoengineered drug delivery system. In: Mishra AK, editor. Nanomedicine for drug delivery and therapeutics. Hoboken, NJ: Wiley; 2013.

    Google Scholar 

  123. Barratt GM. Therapeutic applications of colloidal drug carrier. Pharm Sci Technol Today. 2000;3:163–71.

    Article  CAS  Google Scholar 

  124. Ghosh S. Recent research and development in synthetic polymer-based drug delivery systems. J Chem Res. 2004;4:241–6.

    Article  Google Scholar 

  125. Reis CP, Neufeld RJ, Ribeiro ANJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomed Nanotechnol Biol Med. 2006;2(2):53–65.

    Article  CAS  Google Scholar 

  126. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res. 2004;21(10):1818–25.

    Article  CAS  Google Scholar 

  127. Nafee N, Schneider M, Schaefer UF, Lehr CM. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm. 2009;381(2):130–9.

    Article  CAS  Google Scholar 

  128. Reis ACBP. Encapsulação de Fármacos Peptídicos Pelo Método de Emulsificação/Gelificação Interna. Ph.D. Thesis, Faculdade Farmácia Universidade de Coimbra, 2007.

    Google Scholar 

  129. Lim TY, Poh CK, Wang W. Poly(lactic-co-glycolic acid) as a controlled release delivery device. J Mater Sci Mater Med. 2009;20(8):1669–75. doi:10.1007/s10856-009-3727-z.

    Article  CAS  Google Scholar 

  130. Park JK, Yeom J, Oh EJ, Reddy M, Kim JY. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for perio-dontal barrier applications. Acta Biomater. 2009;5(9):3394–403.

    Article  CAS  Google Scholar 

  131. Vij N, Min T, Marasigan R, Belcher CN, Mazur S. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnol. 2010;8:22.

    Article  CAS  Google Scholar 

  132. Csaba N, Sanchez A, Alonso MJ. PLGA: Polox-amer and PLGA: poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release. 2006;113(2):164–72.

    Article  CAS  Google Scholar 

  133. Little SR, Lynn DM, Ge Q, Anderson DG, Puram SV. Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci U S A. 2004;101(26):9534–9.

    Article  CAS  Google Scholar 

  134. Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. In Vitro Eval Mol Pharm. 2005;2(5):357–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, S. (2016). Nanotechnology and Its Drug Delivery Applications. In: Natural Polymer Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-41129-3_1

Download citation

Publish with us

Policies and ethics