Skip to main content

Cosmological Constant Problem

  • Chapter
  • First Online:
Classical and Quantum Cosmology

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2604 Accesses

Abstract

A suspicion shared by some, including the author, is that a satisfactory solution of the cosmological constant problem would shed much light on the puzzle of quantum gravity. Quantum field theory, vacuum fluctuations, the microscopic degrees of freedom of gravity and their coarse graining all converge to this Pandora’s box in ways that still fascinate even the most consummate expert. About three quarters of the content of the universe is something whose intimate nature is utterly unknown. Hundreds of explanations, theories, models, conjectures have been put forward without successfully convincing the scientist. This chapter is an account, with neither sad nor happy ending, of the problem and of some of the efforts dedicated to its solution.

What shall we use to fill the empty spaces?

      — Roger Waters (Pink Floyd) , The Wall

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An early attempt to explain the cosmological constant in perturbative quantum gravity is [60], where the bare Λ is compensated by one-loop terms. This case is still of deterministic type, the cosmological constant being driven to zero by quantum effects.

  2. 2.

    When the form factors are left unspecified, the two formulations can be mapped one onto the other by a redefinition of ω [306].

  3. 3.

    First-order formalism is mandatory in order to couple fermions with gravity consistently.

  4. 4.

    For vanishing chemical potential, the enthalpy is \(E - F = \mathcal{T} S\) and measures the difference between the energy and the free energy of a finite-temperature system.

  5. 5.

    An ultra-simplified instance of this mechanism is the recovery of the Friedmann equations with K = 0 = Λ from Newtonian and thermodynamics considerations. Let D = 4 and consider an expanding ball of volume \(\mathcal{V} = 4\pi a^{3}/3\) filled with energy (mass) \(E = M =\rho \mathcal{V}\). Assuming the hypothesis of adiabatic expansion (no change in entropy, dS = 0), the first law of thermodynamics \(\text{d}E + P\,\text{d}\mathcal{V} = 0\) is equivalent to the continuity equation \(\dot{\rho }+3H(\rho +P) = 0\). On the other hand, the first Friedmann equation can be interpreted as an energy conservation equation \(m\dot{a}^{2}/2 - GmM/a = 0\), where the first term is a kinetic energy of a small mass m at distance a from the observer in the uniform medium and the second term is Newton’s potential.

  6. 6.

    In Chap. 2 we used the symbol n μ for a generic null vector but here it will denote a congruence.

  7. 7.

    Without invoking thermodynamical arguments, the equations of motion (7.118) can be obtained in metric formalism by splitting the Einstein–Hilbert Lagrangian \(\mathcal{L}_{\mathrm{EH}} = \mathcal{L}_{\mathrm{bulk}} + \mathcal{L}_{\mathrm{sur}}\) into a bulk and a surface term and, then, varying only the surface term with respect to special variations of the metric encoding a normal displacement to a null surface [511513]. This is possible thanks to the holographic relation \(\sqrt{-g}\mathcal{L}_{\mathrm{sur}} = -(D/2 - 1)^{-1}\partial _{\sigma }[g_{\mu \nu }\partial (\sqrt{-g}\mathcal{L}_{\mathrm{bulk}})/\partial (\partial _{\sigma }g_{\mu \nu })]\). The same procedure is generalizable to an arbitrary gravitational Lagrangian [514]. The lack of a thermodynamical interpretation in metric formalism, however, does not explain why gravity is holographic.

  8. 8.

    The presence of a minimal length in Padmanabhan’s theory can be inferred also by other arguments independent of (7.137) [525, 526].

References

  1. A.D. Linde, Is the cosmological constant a constant? Pis’ma Zh. Eksp. Teor. Fiz. 19, 320 (1974) [JETP Lett. 19, 183 (1974)]

  2. A.D. Linde, Phase transitions in gauge theories and cosmology. Rep. Prog. Phys. 42, 389 (1979)

    Article  ADS  Google Scholar 

  3. Y. Nambu, Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Goldstone, Field theories with “superconductor” solutions. Nuovo Cim. 19, 154 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  7. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964)

    Article  ADS  Google Scholar 

  8. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  9. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964)

    Article  ADS  Google Scholar 

  10. J. Dreitlein, Broken symmetry and the cosmological constant. Phys. Rev. Lett. 33, 1243 (1974)

    Article  ADS  Google Scholar 

  11. S.A. Bludman, M.A. Ruderman, Induced cosmological constant expected above the phase transition restoring the broken symmetry. Phys. Rev. Lett. 38, 255 (1977)

    Article  ADS  Google Scholar 

  12. D.B. Chitwood et al. [MuLan Collaboration], Improved measurement of the positive muon lifetime and determination of the Fermi constant. Phys. Rev. Lett. 99, 032001 (2007). [arXiv:0704.1981]

  13. T. Plehn, M. Rauch, Quartic Higgs coupling at hadron colliders. Phys. Rev. D 72, 053008 (2005). [arXiv:hep-ph/0507321]

  14. J. Martin, Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). C. R. Phys. 13, 566 (2012). [arXiv:1205.3365]

  15. Ya.B. Zel’dovich, The cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 11, 381 (1968)

  16. J.F. Koksma, T. Prokopec, The cosmological constant and Lorentz invariance of the vacuum state. arXiv:1105.6296

  17. P.M. Stevenson, Gaussian effective potential. I. Quantum mechanics. Phys. Rev. D 30, 1712 (1984).

    Google Scholar 

  18. P.M. Stevenson, Gaussian effective potential. II. λ ϕ 4 field theory. Phys. Rev. D 32, 1389 (1985).

  19. P.M. Stevenson, R. Tarrach, The return of λ ϕ 4. Phys. Lett. B 176, 436 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  20. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  21. Ya.B. Zel’dovich, Cosmological constant and elementary particles. Pis’ma Zh. Eksp. Teor. Fiz. 6, 883 (1967) [JETP Lett. 6, 316 (1967)]

  22. B. Zumino, Supersymmetry and the vacuum. Nucl. Phys. B 89, 535 (1975)

    Article  ADS  Google Scholar 

  23. S. Weinberg, Does gravitation resolve the ambiguity among supersymmetry vacua? Phys. Rev. Lett. 48, 1776 (1982)

    Article  ADS  Google Scholar 

  24. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. T. Padmanabhan, Dark energy: mystery of the millennium. AIP Conf. Proc. 861, 179 (2006). [arXiv:astro-ph/0603114]

  26. T. Padmanabhan, Dark energy and gravity. Gen. Relat. Grav. 40, 529 (2008). [arXiv:0705.2533]

  27. T. Padmanabhan, H. Padmanabhan, Cosmological constant from the emergent gravity perspective. Int. J. Mod. Phys. D 23, 1430011 (2014). [arXiv:1404.2284]

  28. T. Padmanabhan, The physical principle that determines the value of the cosmological constant. arXiv:1210.4174

  29. H. Padmanabhan, T. Padmanabhan, CosMIn: the solution to the cosmological constant problem. Int. J. Mod. Phys. D 22, 1342001 (2013). [arXiv:1302.3226]

  30. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  32. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975); Erratum-ibid. 46, 206 (1976)

  33. S.W. Hawking, Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976)

    Article  ADS  Google Scholar 

  34. G. ’t Hooft, Dimensional reduction in quantum gravity, in Salamfestschrift, ed. by A. Ali, J. Ellis, S. Randjbar-Daemi (World Scientific, Singapore, 1993). [arXiv:gr-qc/9310026]

  35. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971 (1999). [arXiv:hep-th/9803132]

  36. V. Sahni, A.A. Starobinsky, The case for a positive cosmological Λ-term. Int. J. Mod. Phys. D 9, 373 (2000). [arXiv:astro-ph/9904398]

  37. S. Nobbenhuis, Categorizing different approaches to the cosmological constant problem. Found. Phys. 36, 613 (2006). [arXiv:gr-qc/0411093]

  38. E. Mottola, Particle creation in de Sitter space. Phys. Rev. D 31, 754 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  39. T. Banks, Relaxation of the cosmological constant. Phys. Rev. Lett. 52, 1461 (1984)

    Article  ADS  Google Scholar 

  40. L.F. Abbott, A mechanism for reducing the value of the cosmological constant. Phys. Lett. B 150, 427 (1985)

    Article  ADS  Google Scholar 

  41. M. Endō, T. Fukui, The cosmological term and a modified Brans–Dicke cosmology. Gen. Relat. Grav. 8, 833 (1977)

    Article  ADS  Google Scholar 

  42. A.D. Dolgov, An attempt to get rid of the cosmological constant, in The Very Early Universe, ed. by G.W. Gibbons, S.W. Hawking, S.T.C. Siklos (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  43. Y. Fujii, Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory. Phys. Rev. D 26, 2580 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  44. L.H. Ford, Quantum instability of de Sitter spacetime. Phys. Rev. D 31, 710 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  45. O. Bertolami, Time-dependent cosmological term. Nuovo Cim. B 93, 36 (1986)

    Article  ADS  Google Scholar 

  46. O. Bertolami, Brans–Dicke cosmology with a scalar field dependent cosmological term. Fortsch. Phys. 34, 829 (1986)

    ADS  Google Scholar 

  47. L.H. Ford, Cosmological-constant damping by unstable scalar fields. Phys. Rev. D 35, 2339 (1987).

    Article  ADS  Google Scholar 

  48. R.D. Peccei, J. Solà, C. Wetterich, Adjusting the cosmological constant dynamically: cosmons and a new force weaker than gravity. Phys. Lett. B 195, 183 (1987)

    Article  ADS  Google Scholar 

  49. S.M. Barr, Attempt at a classical cancellation of the cosmological constant. Phys. Rev. D 36, 1691 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  50. C. Wetterich, Cosmologies with variable Newton’s “constant”. Nucl. Phys. B 302, 645 (1988)

    Article  ADS  Google Scholar 

  51. C. Wetterich, Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  52. W.-M. Suen, C.M. Will, Damping of the cosmological constant by a classical scalar field. Phys. Lett. B 205, 447 (1988)

    Article  ADS  Google Scholar 

  53. Y. Fujii, Saving the mechanism of a decaying cosmological constant. Mod. Phys. Lett. A 04, 513 (1989)

    Article  ADS  Google Scholar 

  54. E.T. Tomboulis, Dynamically adjusted cosmological constant and conformal anomalies. Nucl. Phys. B 329, 410 (1990)

    Article  ADS  Google Scholar 

  55. Y. Fujii, T. Nishioka, Model of a decaying cosmological constant. Phys. Rev. D 42, 361 (1990)

    Article  ADS  Google Scholar 

  56. L. Parker, Cosmological constant and absence of particle creation. Phys. Rev. Lett. 50, 1009 (1983)

    Article  ADS  Google Scholar 

  57. V.A. Rubakov, M.E. Shaposhnikov, Extra space-time dimensions: towards a solution to the cosmological constant problem. Phys. Lett. B 125, 139 (1983)

    Article  ADS  Google Scholar 

  58. I. Antoniadis, N.C. Tsamis, On the cosmological constant problem. Phys. Lett. B 144, 55 (1984)

    Article  ADS  Google Scholar 

  59. S.G. Rajeev, Why is the cosmological constant small? Phys. Lett. B 125, 144 (1983)

    Article  ADS  Google Scholar 

  60. T.R. Taylor, G. Veneziano, Quenching the cosmological constant. Phys. Lett. B 228, 311 (1989)

    Article  ADS  Google Scholar 

  61. M. Özer, M.O. Taha, A solution to the main cosmological problems. Phys. Lett. B 171, 363 (1986)

    Article  ADS  Google Scholar 

  62. M. Özer, M.O. Taha, A model of the universe free of cosmological problems. Nucl. Phys. B 287, 776 (1987)

    Article  ADS  Google Scholar 

  63. T.S. Olson, T.F. Jordan, Ages of the Universe for decreasing cosmological constants. Phys. Rev. D 35, 3258 (1987)

    Article  ADS  Google Scholar 

  64. K. Freese, F.C. Adams, J.A. Frieman, E. Mottola, Cosmology with decaying vacuum energy. Nucl. Phys. B 287, 797 (1987)

    Article  ADS  Google Scholar 

  65. M. Reuter, C. Wetterich, Time evolution of the cosmological “constant”. Phys. Lett. B 188, 38 (1987)

    Article  ADS  Google Scholar 

  66. J.M. Overduin, F.I. Cooperstock, Evolution of the scale factor with a variable cosmological term. Phys. Rev. D 58, 043506 (1998). [arXiv:astro-ph/9805260]

  67. P.J.E. Peebles, B. Ratra, Cosmology with a time variable cosmological constant. Astrophys. J. 325, L17 (1988)

    Article  ADS  Google Scholar 

  68. B. Ratra, P.J.E. Peebles, Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  69. K. Coble, S. Dodelson, J.A. Frieman, Dynamical Λ models of structure formation. Phys. Rev. D 55, 1851 (1997). [arXiv:astro-ph/9608122]

  70. M.S. Turner, M.J. White, CDM models with a smooth component. Phys. Rev. D 56, 4439 (1997). [arXiv:astro-ph/9701138]

  71. R.R. Caldwell, R. Dave, P.J. Steinhardt, Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80, 1582 (1998). [arXiv:astro-ph/9708069]

  72. P.G. Ferreira, M. Joyce, Structure formation with a selftuning scalar field. Phys. Rev. Lett. 79, 4740 (1997). [arXiv:astro-ph/9707286]

  73. P.G. Ferreira, M. Joyce, Cosmology with a primordial scaling field. Phys. Rev. D 58, 023503 (1998). [arXiv:astro-ph/9711102]

  74. G. Huey, L. Wang, R. Dave, R.R. Caldwell, P.J. Steinhardt, Resolving the cosmological missing energy problem. Phys. Rev. D 59, 063005 (1999). [arXiv:astro-ph/9804285]

  75. S.M. Carroll, Quintessence and the rest of the world: suppressing long-range interactions. Phys. Rev. Lett. 81, 3067 (1998). [arXiv:astro-ph/9806099]

  76. I. Zlatev, L. Wang, P.J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896 (1999). [arXiv:astro-ph/9807002]

  77. A.R. Liddle, R.J. Scherrer, Classification of scalar field potentials with cosmological scaling solutions. Phys. Rev. D 59, 023509 (1999). [arXiv:astro-ph/9809272]

  78. C.F. Kolda, D.H. Lyth, Quintessential difficulties. Phys. Lett. B 458, 197 (1999). [arXiv:hep-ph/9811375]

  79. P.J. Steinhardt, L. Wang, I. Zlatev, Cosmological tracking solutions. Phys. Rev. D 59, 123504 (1999). [arXiv:astro-ph/9812313]

  80. L. Wang, R.R. Caldwell, J.P. Ostriker, P.J. Steinhardt, Cosmic concordance and quintessence. Astrophys. J. 530, 17 (2000). [arXiv:astro-ph/9901388]

  81. A. de la Macorra, G. Piccinelli, General scalar fields as quintessence. Phys. Rev. D 61, 123503 (2000). [arXiv:hep-ph/9909459]

  82. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). [arXiv:hep-th/0603057]

  83. E.J. Copeland, A.R. Liddle, D. Wands, Exponential potentials and cosmological scaling solutions. Phys. Rev. D 57, 4686 (1998). [arXiv:gr-qc/9711068]

  84. T. Chiba, Slow-roll thawing quintessence. Phys. Rev. D 79, 083517 (2009); Erratum-ibid. D 80, 109902(E) (2009). [arXiv:0902.4037]

  85. T. Chiba, Equation of state of tracker fields. Phys. Rev. D 81, 023515 (2010). [arXiv:0909.4365]

  86. T. Chiba, A. De Felice, S. Tsujikawa, Observational constraints on quintessence: thawing, tracker, and scaling models. Phys. Rev. D 87, 083505 (2013). [arXiv:1210.3859]

  87. R.R. Caldwell, E.V. Linder, Limits of quintessence. Phys. Rev. Lett. 95, 141301 (2005). [arXiv:astro-ph/0505494]

  88. E.V. Linder, Paths of quintessence. Phys. Rev. D 73, 063010 (2006). [arXiv:astro-ph/0601052]

  89. R.J. Scherrer, A.A. Sen, Thawing quintessence with a nearly flat potential. Phys. Rev. D 77, 083515 (2008). [arXiv:0712.3450]

  90. P.S. Corasaniti, E.J. Copeland, Model independent approach to the dark energy equation of state. Phys. Rev. D 67, 063521 (2003). [arXiv:astro-ph/0205544]

  91. D.K. Hazra, S. Majumdar, S. Pal, S. Panda, A.A. Sen, S.P. Trivedi, Post-Planck dark energy constraints. Phys. Rev. D 91, 083005 (2015). [arXiv:1310.6161]

  92. A.Yu. Kamenshchik, U. Moschella, V. Pasquier, An alternative to quintessence. Phys. Lett. B 511, 265 (2001). [arXiv:gr-qc/0103004]

  93. N. Bilic, G.B. Tupper, R.D. Viollier, Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Phys. Lett. B 535, 17 (2002). [arXiv:astro-ph/0111325]

  94. M.C. Bento, O. Bertolami, A.A. Sen, Generalized Chaplygin gas, accelerated expansion and dark energy matter unification. Phys. Rev. D 66, 043507 (2002). [arXiv:gr-qc/0202064]

  95. M.C. Bento, O. Bertolami, A.A. Sen, Generalized Chaplygin gas model: dark energy – dark matter unification and CMBR constraints. Gen. Relat. Grav. 35, 2063 (2003). [arXiv:gr-qc/0305086]

  96. A.A. Sen, R.J. Scherrer, Generalizing the generalized Chaplygin gas. Phys. Rev. D 72, 063511 (2005). [arXiv:astro-ph/0507717]

  97. S. Chaplygin, On gas jets. Sci. Mem. Moscow Univ. Math. 21, 1 (1904)

    Google Scholar 

  98. N. Weiss, Possible origins of a small, nonzero cosmological constant. Phys. Lett. B 197, 42 (1987)

    Article  ADS  Google Scholar 

  99. C.T. Hill, D.N. Schramm, J.N. Fry, Cosmological structure formation from soft topological defects. Comments Nucl. Part. Phys. 19, 25 (1989)

    Google Scholar 

  100. J.A. Frieman, C.T. Hill, R. Watkins, Late-time cosmological phase transitions: particle-physics models and cosmic evolution. Phys. Rev. D 46, 1226 (1992)

    Article  ADS  Google Scholar 

  101. J.A. Frieman, C.T. Hill, A. Stebbins, I. Waga, Cosmology with ultralight pseudo Nambu–Goldstone bosons. Phys. Rev. Lett. 75, 2077 (1995). [arXiv:astro-ph/9505060]

  102. L.J. Hall, Y. Nomura, S.J. Oliver, Evolving dark energy with w ≠ − 1. Phys. Rev. Lett. 95, 141302 (2005). [arXiv:astro-ph/0503706]

  103. S. Dutta, R.J. Scherrer, Hilltop quintessence. Phys. Rev. D 78, 123525 (2008). [arXiv:0809.4441]

  104. K. Choi, String or M theory axion as a quintessence. Phys. Rev. D 62, 043509 (2000). [arXiv:hep-ph/9902292]

  105. R. Kallosh, A.D. Linde, S. Prokushkin, M. Shmakova, Supergravity, dark energy and the fate of the universe. Phys. Rev. D 66, 123503 (2002). [arXiv:hep-th/0208156]

  106. M.S. Turner, Coherent scalar-field oscillations in an expanding universe. Phys. Rev. D 28, 1243 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  107. B. Spokoiny, Deflationary universe scenario. Phys. Lett. B 315, 40 (1993). [arXiv:gr-qc/9306008]

  108. T. Barreiro, E.J. Copeland, N.J. Nunes, Quintessence arising from exponential potentials. Phys. Rev. D 61, 127301 (2000). [arXiv:astro-ph/9910214]

  109. C. Rubano, P. Scudellaro, On some exponential potentials for a cosmological scalar field as quintessence. Gen. Relat. Grav. 34, 307 (2002). [arXiv:astro-ph/0103335]

  110. A.A. Sen, S. Sethi, Quintessence model with double exponential potential. Phys. Lett. B 532, 159 (2002). [arXiv:gr-qc/0111082]

  111. M. Gutperle, R. Kallosh, A.D. Linde, M/string theory, S-branes and accelerating universe. JCAP 0307, 001 (2003). [arXiv:hep-th/0304225]

  112. I.P. Neupane, Accelerating cosmologies from exponential potentials. Class. Quantum Grav. 21, 4383 (2004). [arXiv:hep-th/0311071]

  113. L. Järv, T. Mohaupt, F. Saueressig, Quintessence cosmologies with a double exponential potential. JCAP 0408, 016 (2004). [arXiv:hep-th/0403063]

  114. C.M. Hull, The minimal couplings and scalar potentials of the gauged N = 8 supergravities. Class. Quantum Grav. 2, 343 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  115. R. Kallosh, A.D. Linde, S. Prokushkin, M. Shmakova, Gauged supergravities, de Sitter space and cosmology. Phys. Rev. D 65, 105016 (2002). [arXiv:hep-th/0110089]

  116. H. Lü, C.N. Pope, p-brane solitons in maximal supergravities. Nucl. Phys. B 465, 127 (1996). [arXiv:hep-th/9512012]

  117. I.V. Lavrinenko, H. Lü, C.N. Pope, Fiber bundles and generalized dimensional reduction. Class. Quantum Grav. 15, 2239 (1998). [arXiv:hep-th/9710243]

  118. M.S. Bremer, M.J. Duff, H. Lü, C.N. Pope, K.S. Stelle, Instanton cosmology and domain walls from M theory and string theory. Nucl. Phys. B 543, 321 (1999). [arXiv:hep-th/9807051]

  119. S.W. Hawking, H.S. Reall, Inflation, singular instantons and eleven-dimensional cosmology. Phys. Rev. D 59, 023502 (1999). [arXiv:hep-th/9807100]

  120. A. Albrecht, C. Skordis, Phenomenology of a realistic accelerating universe using only Planck scale physics. Phys. Rev. Lett. 84, 2076 (2000). [arXiv:astro-ph/9908085]

  121. C. Skordis, A. Albrecht, Planck scale quintessence and the physics of structure formation. Phys. Rev. D 66, 043523 (2002). [arXiv:astro-ph/0012195]

  122. G.R. Dvali, S.H.H. Tye, Brane inflation. Phys. Lett. B 450, 72 (1999). [arXiv:hep-ph/9812483]

  123. V. Sahni, L. Wang, New cosmological model of quintessence and dark matter. Phys. Rev. D 62, 103517 (2000). [arXiv:astro-ph/9910097]

  124. L.P. Chimento, A.S. Jakubi, Scalar field cosmologies with perfect fluid in Robertson–Walker metric. Int. J. Mod. Phys. D 5, 71 (1996). [arXiv:gr-qc/9506015]

  125. L.A. Ureña-López, T. Matos, New cosmological tracker solution for quintessence. Phys. Rev. D 62, 081302 (2000). [arXiv:astro-ph/0003364]

  126. T.R. Taylor, G. Veneziano, S. Yankielowicz, Supersymmetric QCD and its massless limit: an effective lagrangian analysis. Nucl. Phys. B 218, 493 (1983)

    Article  ADS  Google Scholar 

  127. I. Affleck, M. Dine, N. Seiberg, Dynamical supersymmetry breaking in four dimensions and its phenomenological implications. Nucl. Phys. B 256, 557 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  128. P. Binétruy, Models of dynamical supersymmetry breaking and quintessence. Phys. Rev. D 60, 063502 (1999). [arXiv:hep-ph/9810553]

  129. A. Masiero, M. Pietroni, F. Rosati, SUSY QCD and quintessence. Phys. Rev. D 61, 023504 (2000). [arXiv:hep-ph/9905346]

  130. P. Brax, J. Martin, Robustness of quintessence. Phys. Rev. D 61, 103502 (2000). [arXiv:astro-ph/9912046]

  131. P.-Y. Wang, C.-W. Chen, P. Chen, Confronting tracker field quintessence with data. JCAP 1202, 016 (2012). [arXiv:1108.1424]

  132. P. Brax, J. Martin, Quintessence and supergravity. Phys. Lett. B 468, 40 (1999). [arXiv:astro-ph/9905040]

  133. E.J. Copeland, N.J. Nunes, F. Rosati, Quintessence models in supergravity. Phys. Rev. D 62, 123503 (2000). [arXiv:hep-ph/0005222]

  134. P. Brax, J. Martin, A. Riazuelo, Exhaustive study of cosmic microwave background anisotropies in quintessential scenarios. Phys. Rev. D 62, 103505 (2000). [arXiv:astro-ph/0005428]

  135. P. Brax, J. Martin, A. Riazuelo, Quintessence with two energy scales. Phys. Rev. D 64, 083505 (2001). [arXiv:hep-ph/0104240]

  136. S.C.C. Ng, N.J. Nunes, F. Rosati, Applications of scalar attractor solutions to cosmology. Phys. Rev. D 64, 083510 (2001). [arXiv:astro-ph/0107321]

  137. P.S. Corasaniti, E.J. Copeland, Constraining the quintessence equation of state with SnIa data and CMB peaks. Phys. Rev. D 65, 043004 (2002). [arXiv:astro-ph/0107378]

  138. S.A. Bludman, Tracking quintessence would require two cosmic coincidences. Phys. Rev. D 69, 122002 (2004). [arXiv:astro-ph/0403526]

  139. E. Witten, The cosmological constant from the viewpoint of string theory. arXiv:hep-ph/0002297

  140. P.J.E. Peebles, A. Vilenkin, Quintessential inflation. Phys. Rev. D 59, 063505 (1999). [arXiv:astro-ph/9810509]

  141. M. Giovannini, Spikes in the relic graviton background from quintessential inflation. Class. Quantum Grav. 16, 2905 (1999). [arXiv:hep-ph/9903263]

  142. M. Peloso, F. Rosati, On the construction of quintessential inflation models. JHEP 9912, 026 (1999). [arXiv:hep-ph/9908271]

  143. K. Dimopoulos, J.W.F. Valle, Modeling quintessential inflation. Astropart. Phys. 18, 287 (2002). [arXiv:astro-ph/0111417]

  144. K. Dimopoulos, Curvaton hypothesis and the η-problem of quintessential inflation, with and without branes. Phys. Rev. D 68, 123506 (2003). [arXiv:astro-ph/0212264]

  145. A.H. Campos, H.C. Reis, R. Rosenfeld, Preheating in quintessential inflation. Phys. Lett. B 575, 151 (2003). [arXiv:hep-ph/0210152]

  146. L.H. Ford, Gravitational particle creation and inflation. Phys. Rev. D 35, 2955 (1987)

    Article  ADS  Google Scholar 

  147. M. Joyce, T. Prokopec, Turning around the sphaleron bound: electroweak baryogenesis in an alternative postinflationary cosmology. Phys. Rev. D 57, 6022 (1998). [arXiv:hep-ph/9709320]

  148. G.N. Felder, L. Kofman, A.D. Linde, Inflation and preheating in nonoscillatory models. Phys. Rev. D 60, 103505 (1999). [arXiv:hep-ph/9903350]

  149. E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart, D. Wands, False vacuum inflation with Einstein gravity. Phys. Rev. D 49, 6410 (1994). [arXiv:astro-ph/9401011]

  150. R.A. Frewin, J.E. Lidsey, On identifying the present day vacuum energy with the potential driving inflation. Int. J. Mod. Phys. D 2, 323 (1993). [arXiv:astro-ph/9312035]

  151. A.B. Kaganovich, Field theory model giving rise to “quintessential inflation” without the cosmological constant and other fine tuning problems. Phys. Rev. D 63, 025022 (2001). [arXiv:hep-th/0007144]

  152. G. Huey, J.E. Lidsey, Inflation, braneworlds and quintessence. Phys. Lett. B 514, 217 (2001). [arXiv:astro-ph/0104006]

  153. R. Rosenfeld, J.A. Frieman, A simple model for quintessential inflation. JCAP 0509, 003 (2005). [arXiv:astro-ph/0504191]

  154. P. Jordan, Formation of the stars and development of the universe. Nature 164, 637 (1949)

    Article  ADS  MATH  Google Scholar 

  155. M. Fierz, Über die physikalische Deutung der erweiterten Gravitationstheorie P. Jordans. Helv. Phys. Acta 29, 128 (1956)

    MATH  Google Scholar 

  156. P. Jordan, Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157, 112 (1959)

    Article  ADS  Google Scholar 

  157. C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  158. R.H. Dicke, Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  159. P.G. Bergmann, Comments on the scalar-tensor theory. Int. J. Theor. Phys. 1, 25 (1968)

    Article  Google Scholar 

  160. K. Nordtvedt, Post-Newtonian metric for a general class of scalar-tensor gravitational theories and observational consequences. Astrophys. J. 161, 1059 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  161. R.V. Wagoner, Scalar-tensor theory and gravitational waves. Phys. Rev. D 1, 3209 (1970)

    Article  ADS  Google Scholar 

  162. S. Deser, Scale invariance and gravitational coupling. Ann. Phys. (N.Y.) 59, 248 (1970)

  163. J. O’Hanlon, Intermediate-range gravity: a generally covariant model. Phys. Rev. Lett. 29, 137 (1972)

    Article  ADS  Google Scholar 

  164. Y. Fujii, Scalar-tensor theory of gravitation and spontaneous breakdown of scale invariance. Phys. Rev. D 9, 874 (1974)

    Article  ADS  Google Scholar 

  165. J.D. Bekenstein, Exact solutions of Einstein-conformal scalar equations. Ann. Phys. (N.Y.) 82, 535 (1974)

  166. P. Minkowski, On the spontaneous origin of Newton’s constant. Phys. Lett. B 71, 419 (1977)

    Article  ADS  Google Scholar 

  167. V. Canuto, S.H. Hsieh, P.J. Adams, Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. Lett. 39, 429 (1977)

    Article  ADS  MATH  Google Scholar 

  168. A. Zee, Broken-symmetric theory of gravity. Phys. Rev. Lett. 42, 417 (1979)

    Article  ADS  Google Scholar 

  169. Y. Fujii, J.M. Niedra, Solutions of a cosmological equation in the scale invariant scalar-tensor theory of gravitation. Prog. Theor. Phys. 70, 412 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  170. J.L. Anderson, Scale invariance of the second kind and the Brans–Dicke scalar-tensor theory. Phys. Rev. D 3, 1689 (1971)

    Article  ADS  Google Scholar 

  171. N. Banerjee, S. Sen, Does Brans–Dicke theory always yield general relativity in the infinite ω limit? Phys. Rev. D 56, 1334 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  172. V. Faraoni, The ω →  limit of Brans–Dicke theory. Phys. Lett. A 245, 26 (1998). [arXiv:gr-qc/9805057]

  173. C.G. Callan, S.R. Coleman, R. Jackiw, A new improved energy-momentum tensor. Ann. Phys. (N.Y.) 59, 42 (1970)

  174. D.Z. Freedman, I.J. Muzinich, E.J. Weinberg, On the energy-momentum tensor in gauge field theories. Ann. Phys. (N.Y.) 87, 95 (1974)

  175. D.Z. Freedman, E.J. Weinberg, The energy-momentum tensor in scalar and gauge field theories. Ann. Phys. (N.Y.) 87, 354 (1974)

  176. G. ’t Hooft, M.J.G. Veltman, One loop divergencies in the theory of gravitation. Ann. Poincaré Phys. Theor. A 20, 69 (1974)

  177. L.S. Brown, J.C. Collins, Dimensional renormalization of scalar field theory in curved space-time. Ann. Phys. (N.Y.) 130, 215 (1980)

  178. T. Kaluza, Zum Unitätsproblem in der Physik. Sitz.-ber. Kgl. Preuss. Akad. Wiss. 1921, 966 (1921)

    MATH  Google Scholar 

  179. O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37, 895 (1926) [Surveys High Energy Phys. 5, 241 (1986)]

  180. A.H. Chamseddine, N = 4 supergravity coupled to N = 4 matter and hidden symmetries. Nucl. Phys. B 185, 403 (1981)

    Article  ADS  MATH  Google Scholar 

  181. P.G.O. Freund, Kaluza–Klein cosmologies. Nucl. Phys. B 209, 146 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  182. G. Magnano, L.M. Sokołowski, Physical equivalence between nonlinear gravity theories and a general-relativistic self-gravitating scalar field. Phys. Rev. D 50, 5039 (1994). [arXiv:gr-qc/9312008]

  183. V. Faraoni, E. Gunzig, P. Nardone, Conformal transformations in classical gravitational theories and in cosmology. Fund. Cosmic Phys. 20, 121 (1999). [arXiv:gr-qc/9811047]

    ADS  Google Scholar 

  184. É.É. Flanagan, The conformal frame freedom in theories of gravitation. Class. Quantum Grav. 21, 3817 (2004). [arXiv:gr-qc/0403063]

  185. V. Faraoni, S. Nadeau, (Pseudo)issue of the conformal frame revisited. Phys. Rev. D 75, 023501 (2007). [arXiv:gr-qc/0612075]

  186. R.L. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity, in Gravitation: An Introduction to Current Research, ed. by L. Witten (Wiley, New York, 1962). [arXiv:gr-qc/0405109]

    Google Scholar 

  187. L.M. Sokołowski, Uniqueness of the metric line element in dimensionally reduced theories. Class. Quantum Grav. 6, 59 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  188. C. Armendariz-Picón, Predictions and observations in theories with varying couplings. Phys. Rev. D 66, 064008 (2002). [arXiv:astro-ph/0205187]

  189. R. Catena, M. Pietroni, L. Scarabello, Einstein and Jordan reconciled: a frame-invariant approach to scalar-tensor cosmology. Phys. Rev. D 76, 084039 (2007). [arXiv:astro-ph/0604492]

  190. N. Deruelle, M. Sasaki, Conformal equivalence in classical gravity: the example of “veiled” general relativity. Springer Proc. Phys. 137, 247 (2011). [arXiv:1007.3563]

  191. T. Chiba, M. Yamaguchi, Conformal-frame (in)dependence of cosmological observations in scalar-tensor theory. JCAP 1310, 040 (2013). [arXiv:1308.1142]

  192. K. Nordtvedt, Equivalence principle for massive bodies. II. Theory. Phys. Rev. 169, 1017 (1968)

    ADS  MATH  Google Scholar 

  193. T. Damour, G. Esposito-Farèse, Tensor multiscalar theories of gravitation. Class. Quantum Grav. 9, 2093 (1992)

    Article  ADS  MATH  Google Scholar 

  194. Y.M. Cho, Violation of equivalence principle in Brans–Dicke theory. Class. Quantum Grav. 14, 2963 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  195. L. Hui, A. Nicolis, Equivalence principle for scalar forces. Phys. Rev. Lett. 105, 231101 (2010). [arXiv:1009.2520]

  196. C. Armendariz-Picón, R. Penco, Quantum equivalence principle violations in scalar-tensor theories. Phys. Rev. D 85, 044052 (2012). [arXiv:1108.6028]

  197. F. Nitti, F. Piazza, Scalar-tensor theories, trace anomalies, and the QCD frame. Phys. Rev. D 86, 122002 (2012). [arXiv:1202.2105]

  198. G. Esposito-Farèse, D. Polarski, Scalar-tensor gravity in an accelerating universe. Phys. Rev. D 63, 063504 (2001). [arXiv:gr-qc/0009034]

  199. N. Makino, M. Sasaki, The density perturbation in the chaotic inflation with non-minimal coupling. Prog. Theor. Phys. 86, 103 (1991)

    Article  ADS  Google Scholar 

  200. R. Fakir, S. Habib, W. Unruh, Cosmological density perturbations with modified gravity. Astrophys. J. 394, 396 (1992)

    Article  ADS  Google Scholar 

  201. J. Weenink, T. Prokopec, Gauge invariant cosmological perturbations for the nonminimally coupled inflaton field. Phys. Rev. D 82, 123510 (2010). [arXiv:1007.2133]

  202. J.-O. Gong, J.-c. Hwang, W.-I. Park, M. Sasaki, Y.-S. Song, Conformal invariance of curvature perturbation. JCAP 1109, 023 (2011). [arXiv:1107.1840]

  203. D.I. Kaiser, Primordial spectral indices from generalized Einstein theories. Phys. Rev. D 52, 4295 (1995). [arXiv:astro-ph/9408044]

  204. D.I. Kaiser, Frame independent calculation of spectral indices from inflation. arXiv:astro-ph/9507048

  205. G. Domènech, M. Sasaki, Conformal frame dependence of inflation. JCAP 1504, 022 (2015). [arXiv:1501.07699]

  206. J. White, M. Minamitsuji, M. Sasaki, Curvature perturbation in multi-field inflation with non-minimal coupling. JCAP 1207, 039 (2012). [arXiv:1205.0656]

  207. J. White, M. Minamitsuji, M. Sasaki, Non-linear curvature perturbation in multi-field inflation models with non-minimal coupling. JCAP 1309, 015 (2013). [arXiv:1306.6186]

  208. T. Qiu, J.-Q. Xia, Perturbations of single-field inflation in modified gravity theory. Phys. Lett. B 744, 273 (2015). [arXiv:1406.5902]

  209. M.J. Duff, Inconsistency of quantum field theory in curved space-time, in Quantum Gravity 2, ed. by C.J. Isham, R. Penrose, D.W. Sciama (Oxford University Press, Oxford, 1981)

    Google Scholar 

  210. S.P. de Alwis, Quantization of a theory of 2D dilaton gravity. Phys. Lett. B 289, 278 (1992). [arXiv:hep-th/9205069]

  211. R. Fakir, S. Habib, Quantum fluctuations with strong curvature coupling. Mod. Phys. Lett. A 08, 2827 (1993)

    Article  ADS  Google Scholar 

  212. E. Elizalde, S. Naftulin, S.D. Odintsov, The renormalization structure and quantum equivalence of 2D dilaton gravities. Int. J. Mod. Phys. A 9, 933 (1994). [arXiv:hep-th/9304091]

  213. D. Grumiller, W. Kummer, D.V. Vassilevich, Dilaton gravity in two dimensions. Phys. Rep. 369, 327 (2002). [arXiv:hep-th/0204253]

  214. D. Grumiller, W. Kummer, D.V. Vassilevich, Positive specific heat of the quantum corrected dilaton black hole. JHEP 0307, 009 (2003). [arXiv:hep-th/0305036]

  215. E. Komatsu, T. Futamase, Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background. Phys. Rev. D 59, 064029 (1999). [arXiv:astro-ph/9901127]

  216. S. Tsujikawa, B. Gumjudpai, Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the cosmic microwave background. Phys. Rev. D 69, 123523 (2004). [arXiv:astro-ph/0402185]

  217. D. La, P.J. Steinhardt, Extended inflationary cosmology. Phys. Rev. Lett. 62, 376 (1989); Erratum-ibid. 62, 1066 (1989)

  218. D. La, P.J. Steinhardt, E.W. Bertschinger, Prescription for successful extended inflation. Phys. Lett. B 231, 231 (1989)

    Article  ADS  Google Scholar 

  219. S. Tsujikawa, J. Ohashi, S. Kuroyanagi, A. De Felice, Planck constraints on single-field inflation. Phys. Rev. D 88, 023529 (2013). [arXiv:1305.3044]

  220. C. Wetterich, An asymptotically vanishing time-dependent cosmological “constant”. Astron. Astrophys. 301, 321 (1995) [arXiv:hep-th/9408025]

  221. J.-P. Uzan, Cosmological scaling solutions of nonminimally coupled scalar fields. Phys. Rev. D 59, 123510 (1999). [arXiv:gr-qc/9903004]

  222. T. Chiba, Quintessence, the gravitational constant, and gravity. Phys. Rev. D 60, 083508 (1999). [arXiv:gr-qc/9903094]

  223. L. Amendola, Scaling solutions in general nonminimal coupling theories. Phys. Rev. D 60, 043501 (1999). [arXiv:astro-ph/9904120]

  224. F. Perrotta, C. Baccigalupi, S. Matarrese, Extended quintessence. Phys. Rev. D 61, 023507 (1999). [arXiv:astro-ph/9906066]

  225. R. de Ritis, A.A. Marino, C. Rubano, P. Scudellaro, Tracker fields from nonminimally coupled theory. Phys. Rev. D 62, 043506 (2000). [arXiv:hep-th/9907198]

  226. L. Amendola, Coupled quintessence. Phys. Rev. D 62, 043511 (2000). [arXiv:astro-ph/9908023]

  227. D.J. Holden, D. Wands, Selfsimilar cosmological solutions with a nonminimally coupled scalar field. Phys. Rev. D 61, 043506 (2000). [arXiv:gr-qc/9908026]

  228. N. Bartolo, M. Pietroni, Scalar-tensor gravity and quintessence. Phys. Rev. D 61, 023518 (2000). [arXiv:hep-ph/9908521]

  229. O. Bertolami, P.J. Martins, Nonminimal coupling and quintessence. Phys. Rev. D 61, 064007 (2000). [arXiv:gr-qc/9910056]

  230. B. Boisseau, G. Esposito-Farèse, D. Polarski, A.A. Starobinsky, Reconstruction of a scalar-tensor theory of gravity in an accelerating universe. Phys. Rev. Lett. 85, 2236 (2000). [arXiv:gr-qc/0001066]

  231. V. Faraoni, Inflation and quintessence with nonminimal coupling. Phys. Rev. D 62, 023504 (2000). [arXiv:gr-qc/0002091]

  232. C. Barceló, M. Visser, Scalar fields, energy conditions and traversable wormholes. Class. Quantum Grav. 17, 3843 (2000). [arXiv:gr-qc/0003025]

  233. C. Baccigalupi, S. Matarrese, F. Perrotta, Tracking extended quintessence. Phys. Rev. D 62, 123510 (2000). [arXiv:astro-ph/0005543]

  234. S. Sen, T.R. Seshadri, Self interacting Brans–Dicke cosmology and quintessence. Int. J. Mod. Phys. D 12, 445 (2003). [arXiv:gr-qc/0007079]

  235. D.F. Torres, Quintessence, superquintessence, and observable quantities in Brans–Dicke and nonminimally coupled theories. Phys. Rev. D 66, 043522 (2002). [arXiv:astro-ph/0204504]

  236. S. Matarrese, C. Baccigalupi, F. Perrotta, Approaching Λ without fine-tuning. Phys. Rev. D 70, 061301 (2004). [arXiv:astro-ph/0403480]

  237. S.M. Carroll, A. De Felice, M. Trodden, Can we be tricked into thinking that w is less than − 1? Phys. Rev. D 71, 023525 (2005). [arXiv:astro-ph/0408081]

  238. L. Perivolaropoulos, Crossing the phantom divide barrier with scalar tensor theories. JCAP 0510, 001 (2005). [arXiv:astro-ph/0504582]

  239. S. Tsujikawa, K. Uddin, S. Mizuno, R. Tavakol, J.’i. Yokoyama, Constraints on scalar-tensor models of dark energy from observational and local gravity tests. Phys. Rev. D 77, 103009 (2008). [arXiv:0803.1106]

  240. S. Das, P.S. Corasaniti, J. Khoury, Superacceleration as signature of dark sector interaction. Phys. Rev. D 73, 083509 (2006). [arXiv:astro-ph/0510628]

  241. M. Bruni, S. Matarrese, O. Pantano, A local view of the observable universe. Phys. Rev. Lett. 74, 1916 (1995). [arXiv:astro-ph/9407054]

  242. R.R. Caldwell, A phantom menace? Phys. Lett. B 545, 23 (2002). [arXiv:astro-ph/9908168]

  243. C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relat. 17, 4 (2014)

    ADS  MATH  Google Scholar 

  244. B. Bertotti, L. Iess, P. Tortora, A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  245. T. Damour, K. Nordtvedt, General relativity as a cosmological attractor of tensor scalar theories. Phys. Rev. Lett. 70, 2217 (1993)

    Article  ADS  Google Scholar 

  246. T. Damour, K. Nordtvedt, Tensor-scalar cosmological models and their relaxation toward general relativity. Phys. Rev. D 48, 3436 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  247. T. Clifton, D.F. Mota, J.D. Barrow, Inhomogeneous gravity. Mon. Not. R. Astron. Soc. 358, 601 (2005). [arXiv:gr-qc/0406001]

  248. J. Khoury, A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004). [arXiv:astro-ph/0309300]

  249. J. Khoury, A. Weltman, Chameleon cosmology. Phys. Rev. D 69, 044026 (2004). [arXiv:astro-ph/0309411]

  250. S. Capozziello, Curvature quintessence. Int. J. Mod. Phys. D 11, 483 (2002). [arXiv:gr-qc/0201033]

  251. S. Capozziello, S. Carloni, A. Troisi, Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys. 1, 625 (2003). [arXiv:astro-ph/0303041]

    Google Scholar 

  252. R. Utiyama, B.S. DeWitt, Renormalization of a classical gravitational field interacting with quantized matter fields. J. Math. Phys. 3, 608 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  253. A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation. Dokl. Akad. Nauk SSSR 177, 70 (1967) [Gen. Relat. Grav. 32, 365 (2000)]

  254. T.V. Ruzmaikina, A.A. Ruzmaikin, Quadratic corrections to the Lagrangian density of the gravitational field and the singularity. Zh. Eksp. Teor. Fiz. 57, 680 (1969) [Sov. Phys. JETP 30, 372 (1970)]

  255. P.C.W. Davies, S.A. Fulling, S.M. Christensen, T.S. Bunch, Energy-momentum tensor of a massless scalar quantum field in a Robertson–Walker universe. Ann. Phys. (N.Y.) 109, 108 (1977)

  256. B.S. DeWitt, Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev. 162, 1195 (1967)

    MATH  Google Scholar 

  257. K.S. Stelle, Renormalization of higher-derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  258. K.S. Stelle, Classical gravity with higher derivatives. Gen. Relat. Grav. 9, 353 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  259. J. Julve, M. Tonin, Quantum gravity with higher derivative terms. Nuovo Cim. B 46, 137 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  260. A. Salam, J.A. Strathdee, Remarks on high-energy stability and renormalizability of gravity theory. Phys. Rev. D 18, 4480 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  261. E.S. Fradkin, A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. B 201, 469 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  262. D.G. Boulware, G.T. Horowitz, A. Strominger, Zero-energy theorem for scale-invariant gravity. Phys. Rev. Lett. 50, 1726 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  263. N.H. Barth, S.M. Christensen, Quantizing fourth-order gravity theories: the functional integral. Phys. Rev. D 28, 1876 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  264. I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Action in Quantum Gravity (IOP, Bristol, 1992)

    Google Scholar 

  265. M. Asorey, J.L. López, I.L. Shapiro, Some remarks on high derivative quantum gravity. Int. J. Mod. Phys. A 12, 5711 (1997). [arXiv:hep-th/9610006]

  266. F.d.O. Salles, I.L. Shapiro, Do we have unitary and (super)renormalizable quantum gravity below Planck scale? Phys. Rev. D 89, 084054 (2014). [arXiv:1401.4583]

  267. A. Hindawi, B.A. Ovrut, D. Waldram, Consistent spin-two coupling and quadratic gravitation. Phys. Rev. D 53, 5583 (1996). [arXiv:hep-th/9509142]

  268. A. Hindawi, B.A. Ovrut, D. Waldram, Nontrivial vacua in higher derivative gravitation. Phys. Rev. D 53, 5597 (1996). [arXiv:hep-th/9509147]

  269. T. Chiba, Generalized gravity and ghost. JCAP 0503, 008 (2005). [arXiv:gr-qc/0502070]

  270. A. Núñez, S. Solganik, Ghost constraints on modified gravity. Phys. Lett. B 608, 189 (2005). [arXiv:hep-th/0411102]

  271. S.M. Carroll, A. De Felice, V. Duvvuri, D.A. Easson, M. Trodden, M.S. Turner, Cosmology of generalized modified gravity models. Phys. Rev. D 71, 063513 (2005). [arXiv:astro-ph/0410031]

  272. A. De Felice, M. Hindmarsh, M. Trodden, Ghosts, instabilities, and superluminal propagation in modified gravity models. JCAP 0608, 005 (2006). [arXiv:astro-ph/0604154]

  273. S. Kawai, M.-a. Sakagami, J. Soda, Instability of 1-loop superstring cosmology. Phys. Lett. B 437, 284 (1998). [arXiv:gr-qc/9802033]

  274. S. Kawai, J. Soda, Evolution of fluctuations during graceful exit in string cosmology. Phys. Lett. B 460, 41 (1999). [arXiv:gr-qc/9903017]

  275. G. Calcagni, B. de Carlos, A. De Felice, Ghost conditions for Gauss–Bonnet cosmologies. Nucl. Phys. B 752, 404 (2006). [arXiv:hep-th/0604201]

  276. T. Koivisto, D.F. Mota, Cosmology and astrophysical constraints of Gauss–Bonnet dark energy. Phys. Lett. B 644, 104 (2007). [arXiv:astro-ph/0606078]

  277. T. Koivisto, D.F. Mota, Gauss–Bonnet quintessence: background evolution, large scale structure and cosmological constraints. Phys. Rev. D 75, 023518 (2007). [arXiv:hep-th/0609155]

  278. H. Nariai, On the removal of initial singularity in a big-bang universe in terms of a renormalized theory of gravitation. I. Examination of the present status and a new approach. Prog. Theor. Phys. 46, 433 (1971)

    Google Scholar 

  279. H. Nariai, K. Tomita, On the removal of initial singularity in a big-bang universe in terms of a renormalized theory of gravitation. II. Criteria for obtaining a physically reasonable model. Prog. Theor. Phys. 46, 776 (1971)

    Google Scholar 

  280. P.C.W. Davies, Singularity avoidance and quantum conformal anomalies. Phys. Lett. B 68, 402 (1977)

    Article  ADS  Google Scholar 

  281. M.V. Fischetti, J.B. Hartle, B.L. Hu, Quantum effects in the early universe. I. Influence of trace anomalies on homogeneous, isotropic, classical geometries. Phys. Rev. D 20, 1757 (1979)

  282. K. Tomita, T. Azuma, H. Nariai, On anisotropic and homogeneous cosmological models in the renormalized theory of gravitation. Prog. Theor. Phys. 60, 403 (1978)

    Article  ADS  Google Scholar 

  283. J.D. Barrow, A.C. Ottewill, The stability of general relativistic cosmological theory. J. Phys. A 16, 2757 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  284. S.W. Hawking, R. Penrose, The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  285. A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  286. S. Gottlöber, H.-J. Schmidt, A.A. Starobinsky, Sixth-order gravity and conformal transformations. Class. Quantum Grav. 7, 893 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  287. H.-J. Schmidt, Variational derivatives of arbitrarily high order and multi-inflation cosmological models. Class. Quantum Grav. 7, 1023 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  288. D. Wands, Extended gravity theories and the Einstein–Hilbert action. Class. Quantum Grav. 11, 269 (1994). [arXiv:gr-qc/9307034]

  289. S. Cecotti, Higher derivative supergravity is equivalent to standard supergravity coupled to matter. Phys. Lett. B 190, 86 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  290. S. Cecotti, S. Ferrara, M. Porrati, S. Sabharwal, New minimal higher derivative supergravity coupled to matter. Nucl. Phys. B 306, 160 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  291. B.N. Breizman, V.Ts. Gurovich, V.P. Sokolov, The possibility of setting up regular cosmological solutions. Zh. Eksp. Teor. Fiz. 59, 288 (1970) [Sov. Phys. JETP 32, 155 (1971)]

  292. H.A. Buchdahl, Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 150, 1 (1970)

    Article  ADS  Google Scholar 

  293. H. Nariai, On a phenomenological modification of Einstein’s gravitational Lagrangian. Prog. Theor. Phys. 51, 613 (1974)

    Article  ADS  Google Scholar 

  294. P. Teyssandier, P. Tourrenc, The Cauchy problem for the R + R 2 theories of gravity without torsion. J. Math. Phys. 24, 2793 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  295. G. Magnano, M. Ferraris, M. Francaviglia, Nonlinear gravitational Lagrangians. Gen. Relat. Grav. 19, 465 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  296. H.-J. Schmidt, Comparing self-interacting scalar fields and R + R 3 cosmological models. Astron. Nachr. 308, 183 (1987). [arXiv:gr-qc/0106035]

  297. H.A. Buchdahl, Quadratic Lagrangians and Palatini’s device. J. Phys. A 12, 1229 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  298. G. Allemandi, A. Borowiec, M. Francaviglia, Accelerated cosmological models in Ricci squared gravity. Phys. Rev. D 70, 103503 (2004). [arXiv:hep-th/0407090]

  299. A. Borowiec, M. Ferraris, M. Francaviglia, I. Volovich, Universality of Einstein equations for the Ricci squared Lagrangians. Class. Quantum Grav. 15, 43 (1998). [arXiv:gr-qc/9611067]

  300. A. Núñez, S. Solganik, The content of f(R) gravity. arXiv:hep-th/0403159

  301. V. Faraoni, Solar system experiments do not yet veto modified gravity models. Phys. Rev. D 74, 023529 (2006). [arXiv:gr-qc/0607016]

  302. Y.-S. Song, W. Hu, I. Sawicki, Large scale structure of f(R) gravity. Phys. Rev. D 75, 044004 (2007). [arXiv:astro-ph/0610532]

  303. K.-i. Maeda, Inflation as a transient attractor in R 2 cosmology. Phys. Rev. D 37, 858 (1988)

    Article  ADS  Google Scholar 

  304. K.-i. Maeda, Towards the Einstein–Hilbert action via conformal transformation. Phys. Rev. D 39, 3159 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  305. J.D. Barrow, S. Cotsakis, Inflation and the conformal structure of higher-order gravity theories. Phys. Lett. B 214, 515 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  306. T. Koivisto, H. Kurki-Suonio, Cosmological perturbations in the Palatini formulation of modified gravity. Class. Quantum Grav. 23, 2355 (2006). [arXiv:astro-ph/0509422]

  307. M. Ferraris, M. Francaviglia, I. Volovich, The universality of vacuum Einstein equations with cosmological constant. Class. Quantum Grav. 11, 1505 (1994). [arXiv:gr-qc/9303007]

  308. G.J. Olmo, The gravity Lagrangian according to solar system experiments. Phys. Rev. Lett. 95, 261102 (2005). [arXiv:gr-qc/0505101]

  309. T.P. Sotiriou, f(R) gravity and scalar-tensor theory. Class. Quantum Grav. 23, 5117 (2006). [arXiv:gr-qc/0604028]

  310. B. Li, J.D. Barrow, Cosmology of f(R) gravity in metric variational approach. Phys. Rev. D 75, 084010 (2007). [arXiv:gr-qc/0701111]

  311. I. Navarro, K. Van Acoleyen, f(R) actions, cosmic acceleration and local tests of gravity. JCAP 0702, 022 (2007). [arXiv:gr-qc/0611127]

  312. T. Faulkner, M. Tegmark, E.F. Bunn, Y. Mao, Constraining f(R) gravity as a scalar-tensor theory. Phys. Rev. D 76, 063505 (2007). [arXiv:astro-ph/0612569]

  313. W. Hu, I. Sawicki, Models of f(R) cosmic acceleration that evade solar system tests. Phys. Rev. D 76, 064004 (2007). [arXiv:0705.1158]

  314. S. Capozziello, S. Tsujikawa, Solar system and equivalence principle constraints on f(R) gravity by the chameleon approach. Phys. Rev. D 77, 107501 (2008). [arXiv:0712.2268]

  315. I.W. Roxburgh, Nonlinear Lagrangian theories of gravity. Gen. Relat. Grav. 8, 219 (1977)

    Article  ADS  Google Scholar 

  316. T. Clifton, J.D. Barrow, The power of general relativity. Phys. Rev. D 72, 103005 (2005). [arXiv:gr-qc/0509059]

  317. H. Nariai, Gravitational instability of regular model-universes in a modified theory of general relativity. Prog. Theor. Phys. 49, 165 (1973)

    Article  ADS  Google Scholar 

  318. P. Zhang, Testing gravity against the early time integrated Sachs–Wolfe effect. Phys. Rev. D 73, 123504 (2006). [arXiv:astro-ph/0511218]

  319. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 77, 046009 (2008). [arXiv:0712.4017]

  320. G. Allemandi, A. Borowiec, M. Francaviglia, Accelerated cosmological models in first-order nonlinear gravity. Phys. Rev. D 70, 043524 (2004). [arXiv:hep-th/0403264]

  321. S. Nojiri, S.D. Odintsov, Modified gravity with lnR terms and cosmic acceleration. Gen. Relat. Grav. 36, 1765 (2004). [arXiv:hep-th/0308176]

  322. L.H. Ford, D.J. Toms, Dynamical symmetry breaking due to radiative corrections in cosmology. Phys. Rev. D 25, 1510 (1982)

    Article  ADS  Google Scholar 

  323. A.A. Starobinsky, H.-J. Schmidt, On a general vacuum solution of fourth-order gravity. Class. Quantum Grav. 4, 695 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  324. K.-i. Maeda, J.A. Stein-Schabes, T. Futamase, Inflation in a renormalizable cosmological model and the cosmic no-hair conjecture. Phys. Rev. D 39, 2848 (1989)

    Article  ADS  Google Scholar 

  325. S. Cotsakis, P.J. Saich, Power-law inflation and conformal transformations. Class. Quantum Grav. 11, 383 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  326. H. Weyl, Space, Time, and Matter (Dover, Mineola, 1952)

    Google Scholar 

  327. B. Whitt, Fourth-order gravity as general relativity plus matter. Phys. Lett. B 145, 176 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  328. S. Capozziello, F. Occhionero, L. Amendola, The phase-space view of inflation II: fourth order models. Int. J. Mod. Phys. D 1, 615 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  329. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi, Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 639, 135 (2006). [arXiv:astro-ph/0604431]

  330. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004). [arXiv:astro-ph/0306438]

  331. T. Chiba, 1∕R gravity and scalar-tensor gravity. Phys. Lett. B 575, 1 (2003). [arXiv:astro-ph/0307338]

  332. G.A. Vilkovisky, Effective action in quantum gravity. Class. Quantum Grav. 9, 895 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  333. A.D. Dolgov, M. Kawasaki, Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 573, 1 (2003). [arXiv:astro-ph/0307285]

  334. G.J. Olmo, Post-Newtonian constraints on f(R) cosmologies in metric and Palatini formalism. Phys. Rev. D 72, 083505 (2005). [arXiv:gr-qc/0505135]

  335. L. Amendola, D. Polarski, S. Tsujikawa, Are f(R) dark energy models cosmologically viable? Phys. Rev. Lett. 98, 131302 (2007). [arXiv:astro-ph/0603703]

  336. L. Amendola, D. Polarski, S. Tsujikawa, Power-laws f(R) theories are cosmologically unacceptable. Int. J. Mod. Phys. D 16, 1555 (2007). [arXiv:astro-ph/0605384]

  337. D.N. Vollick, 1∕R curvature corrections as the source of the cosmological acceleration. Phys. Rev. D 68, 063510 (2003). [arXiv:astro-ph/0306630]

  338. X. Meng, P. Wang, Modified Friedmann equations in R −1-modified gravity. Class. Quantum Grav. 20, 4949 (2003). [arXiv:astro-ph/0307354]

  339. X. Meng, P. Wang, Cosmological evolution in 1∕R-gravity theory. Class. Quantum Grav. 21, 951 (2004). [arXiv:astro-ph/0308031]

  340. M. Amarzguioui, Ø. Elgarøy, D.F. Mota, T. Multamäki, Cosmological constraints on f(R) gravity theories within the Palatini approach. Astron. Astrophys. 454, 707 (2006). [arXiv:astro-ph/0510519]

  341. S. Nojiri, S.D. Odintsov, Modified gravity with negative and positive powers of the curvature: unification of the inflation and of the cosmic acceleration. Phys. Rev. D 68, 123512 (2003). [arXiv:hep-th/0307288]

  342. A.W. Brookfield, C. van de Bruck, L.M.H. Hall, Viability of f(R) theories with additional powers of curvature. Phys. Rev. D 74, 064028 (2006). [arXiv:hep-th/0608015]

  343. Á. de la Cruz-Dombriz, P.K.S. Dunsby, S. Kandhai, D. Sáez-Gómez, Theoretical and observational constraints of viable f(R) theories of gravity. Phys. Rev. D 93, 084016 (2016). [arXiv:1511.00102]

  344. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, One-loop f(R) gravity in de Sitter universe. JCAP 0502, 010 (2005). [arXiv:hep-th/0501096]

  345. J.A.R. Cembranos, The Newtonian limit at intermediate energies. Phys. Rev. D 73, 064029 (2006). [arXiv:gr-qc/0507039]

  346. T. Koivisto, Matter power spectrum in f(R) gravity. Phys. Rev. D 73, 083517 (2006). [arXiv:astro-ph/0602031]

  347. S. Capozziello, V.F. Cardone, A. Troisi, Dark energy and dark matter as curvature effects. JCAP 0608, 001 (2006). [arXiv:astro-ph/0602349]

  348. S. Nojiri, S.D. Odintsov, M. Sami, Dark energy cosmology from higher-order, string-inspired gravity and its reconstruction. Phys. Rev. D 74, 046004 (2006). [arXiv:hep-th/0605039]

  349. S. Nojiri, S.D. Odintsov, Modified f(R) gravity consistent with realistic cosmology: from matter dominated epoch to dark energy universe. Phys. Rev. D 74, 086005 (2006). [arXiv:hep-th/0608008]

  350. S. Nojiri, S.D. Odintsov, Modified gravity and its reconstruction from the universe expansion history. J. Phys. Conf. Ser. 66, 012005 (2007). [arXiv:hep-th/0611071]

  351. L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa, Conditions for the cosmological viability of f(R) dark energy models. Phys. Rev. D 75, 083504 (2007). [arXiv:gr-qc/0612180]

  352. I. Sawicki, W. Hu, Stability of cosmological solutions in f(R) models of gravity. Phys. Rev. D 75, 127502 (2007). [arXiv:astro-ph/0702278]

  353. S. Fay, S. Nesseris, L. Perivolaropoulos, Can f(R) modified gravity theories mimic a ΛCDM cosmology? Phys. Rev. D 76, 063504 (2007). [arXiv:gr-qc/0703006]

  354. S.A. Appleby, R.A. Battye, Do consistent F(R) models mimic general relativity plus Λ? Phys. Lett. B 654, 7 (2007). [arXiv:0705.3199]

  355. A.A. Starobinsky, Disappearing cosmological constant in f(R) gravity. JETP Lett. 86, 157 (2007). [arXiv:0706.2041]

  356. S. Tsujikawa, Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints. Phys. Rev. D 77, 023507 (2008). [arXiv:0709.1391]

  357. A. De Felice, S. Tsujikawa, f(R) theories. Living Rev. Relat. 13, 3 (2010).

  358. S. Tsujikawa, Modified gravity models of dark energy. Lect. Notes Phys. 800, 99 (2010). [arXiv:1101.0191]

  359. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rep. 513, 1 (2012). [arXiv:1106.2476]

  360. J.-c. Hwang, Cosmological perturbations in generalized gravity theories: formulation. Class. Quantum Grav. 7, 1613 (1990)

    Article  ADS  Google Scholar 

  361. J.-c. Hwang, Perturbations of the Robertson–Walker space: multicomponent sources and generalized gravity. Astrophys. J. 375, 443 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  362. J.-c. Hwang, H. Noh, Cosmological perturbations in generalized gravity theories. Phys. Rev. D 54, 1460 (1996)

    Article  ADS  Google Scholar 

  363. J.-c. Hwang, H. Noh, Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories. Phys. Rev. D 65, 023512 (2002). [arXiv:astro-ph/0102005]

  364. R. Bean, D. Bernat, L. Pogosian, A. Silvestri, M. Trodden, Dynamics of linear perturbations in f(R) gravity. Phys. Rev. D 75, 064020 (2007). [arXiv:astro-ph/0611321]

  365. L. Pogosian, A. Silvestri, Pattern of growth in viable f(R) cosmologies. Phys. Rev. D 77, 023503 (2008); Erratum-ibid. D 81, 049901 (2010). [arXiv:0709.0296]

  366. S. Tsujikawa, K. Uddin, R. Tavakol, Density perturbations in f(R) gravity theories in metric and Palatini formalisms. Phys. Rev. D 77, 043007 (2008). [arXiv:0712.0082]

  367. P.A.R. Ade et al. [Planck Collaboration], Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. 594, A14 (2016). [arXiv:1502.01590]

  368. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363 (1974)

    Article  MathSciNet  Google Scholar 

  369. C. Charmousis, E.J. Copeland, A. Padilla, P.M. Saffin, General second-order scalar-tensor theory and self-tuning. Phys. Rev. Lett. 108, 051101 (2012). [arXiv:1106.2000]

  370. R. Kase, S. Tsujikawa, Cosmology in generalized Horndeski theories with second-order equations of motion. Phys. Rev. D 90, 044073 (2014). [arXiv:1407.0794]

  371. T. Chiba, T. Okabe, M. Yamaguchi, Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000). [arXiv:astro-ph/9912463]

  372. C. Armendáriz-Picón, V.F. Mukhanov, P.J. Steinhardt, Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85, 4438 (2000). [arXiv:astro-ph/0004134]

  373. C. Armendáriz-Picón, V.F. Mukhanov, P.J. Steinhardt, Essentials of k-essence. Phys. Rev. D 63, 103510 (2001). [arXiv:astro-ph/0006373]

  374. A. Melchiorri, L. Mersini, C.J. Ödman, M. Trodden, The state of the dark energy equation of state. Phys. Rev. D 68, 043509 (2003). [arXiv:astro-ph/0211522]

  375. S. Tsujikawa, M. Sami, A unified approach to scaling solutions in a general cosmological background. Phys. Lett. B 603, 113 (2004). [arXiv:hep-th/0409212]

  376. D.B. Fairlie, J. Govaerts, Universal field equations with reparametrization invariance. Phys. Lett. B 281, 49 (1992). [arXiv:hep-th/9202056]

  377. A. Nicolis, R. Rattazzi, E. Trincherini, Galileon as a local modification of gravity. Phys. Rev. D 79, 064036 (2009). [arXiv:0811.2197]

  378. C. Deffayet, X. Gao, D.A. Steer, G. Zahariade, From k-essence to generalised Galileons. Phys. Rev. D 84, 064039 (2011). [arXiv:1103.3260]

  379. T. Kobayashi, M. Yamaguchi, J.’i. Yokoyama, Generalized G-inflation: inflation with the most general second-order field equations. Prog. Theor. Phys. 126, 511 (2011). [arXiv:1105.5723]

  380. J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Healthy theories beyond Horndeski. Phys. Rev. Lett. 114, 211101 (2015). [arXiv:1404.6495]

  381. C. Lin, S. Mukohyama, R. Namba, R. Saitou, Hamiltonian structure of scalar-tensor theories beyond Horndeski. JCAP 1410, 071 (2014). [arXiv:1408.0670]

  382. J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Exploring gravitational theories beyond Horndeski. JCAP 1502, 018 (2015). [arXiv:1408.1952]

  383. X. Gao, Hamiltonian analysis of spatially covariant gravity. Phys. Rev. D 90, 104033 (2014). [arXiv:1409.6708]

  384. A. De Felice, S. Tsujikawa, Inflationary gravitational waves in the effective field theory of modified gravity. Phys. Rev. D 91, 103506 (2015). [arXiv:1411.0736]

  385. S. Tsujikawa, Possibility of realizing weak gravity in redshift space distortion measurements. Phys. Rev. D 92, 044029 (2015). [arXiv:1505.02459]

  386. F. Arroja, N. Bartolo, P. Karmakar, S. Matarrese, The two faces of mimetic Horndeski gravity: disformal transformations and Lagrange multiplier. JCAP 1509, 051 (2015). [arXiv:1506.08575]

  387. F. Arroja, N. Bartolo, P. Karmakar, S. Matarrese, Cosmological perturbations in mimetic Horndeski gravity. JCAP 1604, 042 (2016). [arXiv:1512.09374]

  388. J.D. Bekenstein, Fine structure constant: is it really a constant? Phys. Rev. D 25, 1527 (1982)

    Article  ADS  Google Scholar 

  389. J.D. Bekenstein, Fine structure constant variability, equivalence principle and cosmology. Phys. Rev. D 66, 123514 (2002). [arXiv:gr-qc/0208081]

  390. J. Magueijo, New varying speed of light theories. Rep. Prog. Phys. 66, 2025 (2003). [arXiv:astro-ph/0305457]

  391. J. Magueijo, Covariant and locally Lorentz invariant varying speed of light theories. Phys. Rev. D 62, 103521 (2000). [arXiv:gr-qc/0007036]

  392. J. Magueijo, Speedy sound and cosmic structure. Phys. Rev. Lett. 100, 231302 (2008). [arXiv:0803.0859]

  393. A. Albrecht, J. Magueijo, A time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 59, 043516 (1999). [arXiv:astro-ph/9811018]

  394. J.D. Barrow, J. Magueijo, Solutions to the quasi-flatness and quasilambda problems. Phys. Lett. B 447, 246 (1999). [arXiv:astro-ph/9811073]

  395. B.A. Bassett, S. Liberati, C. Molina-París, M. Visser, Geometrodynamics of variable-speed-of-light cosmologies. Phys. Rev. D 62, 103518 (2000). [arXiv:astro-ph/0001441]

  396. K. Tomita, Bulk flows and CMB dipole anisotropy in cosmological void models. Astrophys. J. 529, 26 (2000). [arXiv:astro-ph/9905278]

  397. K. Tomita, Distances and lensing in cosmological void models. Astrophys. J. 529, 38 (2000). [arXiv:astro-ph/9906027]

  398. M.-N. Célérier, Do we really see a cosmological constant in the supernovae data? Astron. Astrophys. 353, 63 (2000). [arXiv:astro-ph/9907206]

  399. K. Tomita, A local void and the accelerating universe. Mon. Not. R. Astron. Soc. 326, 287 (2001). [arXiv:astro-ph/0011484]

  400. K. Tomita, Analyses of type Ia supernova data in cosmological models with a local void. Prog. Theor. Phys. 106, 929 (2001). [arXiv:astro-ph/0104141]

  401. M.-N. Célérier, The accelerated expansion of the universe challenged by an effect of the inhomogeneities. A review. New Adv. Phys. 1, 29 (2007). [arXiv:astro-ph/0702416]

    Google Scholar 

  402. G. Lemaître, The expanding universe. Ann. Soc. Sci. Bruxelles Ser. I Sci. Math. Astron. Phys. A 53, 51 (1933) [Gen. Relat. Grav. 29, 641 (1997)]

  403. R.C. Tolman, Effect of imhomogeneity on cosmological models. Proc. Natl. Acad. Sci. 20, 169 (1934) [Gen. Relat. Grav. 29, 935 (1997)]

  404. H. Bondi, Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 107, 410 (1947)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  405. M. Hossein Partovi, B. Mashhoon, Toward verification of large-scale homogeneity in cosmology. Astrophys. J. 276, 4 (1984)

    Article  ADS  Google Scholar 

  406. N.P. Humphreys, R. Maartens, D.R. Matravers, Anisotropic observations in universes with nonlinear inhomogeneity. Astrophys. J. 477, 47 (1997). [arXiv:astro-ph/9602033]

  407. N. Mustapha, C. Hellaby, G.F.R. Ellis, Large-scale inhomogeneity versus source evolution: can we distinguish them observationally? Mon. Not. R. Astron. Soc. 292, 817 (1997). [arXiv:gr-qc/9808079]

  408. S. Khakshournia, R. Mansouri, Dynamics of general relativistic spherically symmetric dust thick shells. Gen. Relat. Grav. 34, 1847 (2002). [arXiv:gr-qc/0308025]

  409. T. Biswas, A. Notari, ‘Swiss-cheese’ inhomogeneous cosmology and the dark energy problem. JCAP 0806, 021 (2008). [arXiv:astro-ph/0702555]

  410. J.W. Moffat, Cosmic microwave background, accelerating universe and inhomogeneous cosmology. JCAP 0510, 012 (2005). [arXiv:astro-ph/0502110]

  411. J.W. Moffat, Late-time inhomogeneity and acceleration without dark energy. JCAP 0605, 001 (2006). [arXiv:astro-ph/0505326]

  412. H. Alnes, M. Amarzguioui, O. Grøn, Inhomogeneous alternative to dark energy? Phys. Rev. D 73, 083519 (2006). [arXiv:astro-ph/0512006]

  413. D.J.H. Chung, A.E. Romano, Mapping luminosity-redshift relationship to Lemaître–Tolman–Bondi cosmology. Phys. Rev. D 74, 103507 (2006). [arXiv:astro-ph/0608403]

  414. K. Enqvist, T. Mattsson, The effect of inhomogeneous expansion on the supernova observations. JCAP 0702, 019 (2007). [arXiv:astro-ph/0609120]

  415. K. Enqvist, Lemaître–Tolman–Bondi model and accelerating expansion. Gen. Relat. Grav. 40, 451 (2008). [arXiv:0709.2044]

  416. S. Alexander, T. Biswas, A. Notari, D. Vaid, Local void vs dark energy: confrontation with WMAP and type Ia supernovae. JCAP 0909, 025 (2009). [arXiv:0712.0370]

  417. J. García-Bellido, T. Haugbølle, Confronting Lemaître–Tolman–Bondi models with observational cosmology. JCAP 0804, 003 (2008). [arXiv:0802.1523]

  418. J. García-Bellido, T. Haugbølle, Looking the void in the eyes—the kinematic Sunyaev–Zeldovich effect in Lemaître–Tolman–Bondi models. JCAP 0809, 016 (2008). [arXiv:0807.1326]

  419. J.P. Zibin, A. Moss, D. Scott, Can we avoid dark energy? Phys. Rev. Lett. 101, 251303 (2008). [arXiv:0809.3761]

  420. S. February, J. Larena, M. Smith, C. Clarkson, Rendering dark energy void. Mon. Not. R. Astron. Soc. 405, 2231 (2010). [arXiv:0909.1479]

  421. T. Biswas, A. Notari, W. Valkenburg, Testing the void against cosmological data: fitting CMB, BAO, SN and H 0. JCAP 1011, 030 (2010). [arXiv:1007.3065]

  422. A. Moss, J.P. Zibin, D. Scott, Precision cosmology defeats void models for acceleration. Phys. Rev. D 83, 103515 (2011). [arXiv:1007.3725]

  423. M. Zumalacárregui, J. García-Bellido, P. Ruiz-Lapuente, Tension in the void: cosmic rulers strain inhomogeneous cosmologies. JCAP 1210, 009 (2012). [arXiv:1201.2790]

  424. R. de Putter, L. Verde, R. Jimenez, Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages. JCAP 1302, 047 (2013). [arXiv:1208.4534]

  425. H. Goto, H. Kodama, The gravitational lensing effect on the CMB polarisation anisotropy in the Λ-LTB model. Prog. Theor. Phys. 125, 815 (2011). [arXiv:1101.0476]

  426. P. Hunt, S. Sarkar, Constraints on large scale inhomogeneities from WMAP-5 and SDSS: confrontation with recent observations. Mon. Not. R. Astron. Soc. 401, 547 (2010). [arXiv:0807.4508]

  427. P.A.R. Ade et al. [Planck Collaboration], Planck intermediate results. XIII. Constraints on peculiar velocities. Astron. Astrophys. 561, A97 (2014). [arXiv:1303.5090]

  428. M. Henneaux, C. Teitelboim, The cosmological constant and general covariance. Phys. Lett. B 222, 195 (1989)

    Article  ADS  Google Scholar 

  429. J.L. Anderson, D. Finkelstein, Cosmological constant and fundamental length. Am. J. Phys. 39, 901 (1971)

    Article  ADS  Google Scholar 

  430. J. Rayski, The problems of quantum gravity. Gen. Relat. Grav. 11, 19 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  431. J.J. van der Bij, H. van Dam, Y.J. Ng, The exchange of massless spin-two particles. Physica A 116, 307 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  432. A. Zee, Remarks on the cosmological constant paradox, in High Energy Physics: Proceedings of the 20th Orbis Scientiae, 1983, ed. by S.L. Mintz, A. Perlmutter (Plenum, New York, 1985)

    Google Scholar 

  433. W. Buchmüller, N. Dragon, Einstein gravity from restricted coordinate invariance. Phys. Lett. B 207, 292 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  434. W. Buchmüller, N. Dragon, Gauge fixing and the cosmological constant. Phys. Lett. B 223, 313 (1989)

    Article  ADS  Google Scholar 

  435. W.G. Unruh, Unimodular theory of canonical quantum gravity. Phys. Rev. D 40, 1048 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  436. W.G. Unruh, R.M. Wald, Time and the interpretation of canonical quantum gravity. Phys. Rev. D 40, 2598 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  437. Y.J. Ng, H. van Dam, Possible solution to the cosmological constant problem. Phys. Rev. Lett. 65, 1972 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  438. Y.J. Ng, H. van Dam, Unimodular theory of gravity and the cosmological constant. J. Math. Phys. 32, 1337 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  439. A.N. Petrov, On the cosmological constant as a constant of integration. Mod. Phys. Lett. A 06, 2107 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  440. E. Álvarez, Can one tell Einstein’s unimodular theory from Einstein’s general relativity? JHEP 0503, 002 (2005). [arXiv:hep-th/0501146]

  441. E. Álvarez, D. Blas, J. Garriga, E. Verdaguer, Transverse Fierz–Pauli symmetry. Nucl. Phys. B 756, 148 (2006). [arXiv:hep-th/0606019]

  442. E. Álvarez, A.F. Faedo, J.J. López-Villarejo, Ultraviolet behavior of transverse gravity. JHEP 0810, 023 (2008). [arXiv:0807.1293]

  443. B. Fiol, J. Garriga, Semiclassical unimodular gravity. JCAP 1008, 015 (2010). [arXiv:0809.1371]

  444. L. Smolin, Quantization of unimodular gravity and the cosmological constant problems. Phys. Rev. D 80, 084003 (2009). [arXiv:0904.4841]

  445. E. Álvarez, R. Vidal, Weyl transverse gravity (WTDiff) and the cosmological constant. Phys. Rev. D 81, 084057 (2010). [arXiv:1001.4458]

  446. D. Blas, M. Shaposhnikov, D. Zenhäusern, Scale-invariant alternatives to general relativity. Phys. Rev. D 84, 044001 (2011). [arXiv:1104.1392]

  447. E. Álvarez, The weight of matter. JCAP 1207, 002 (2012). [arXiv:1204.6162]

  448. A. Eichhorn, On unimodular quantum gravity. Class. Quantum Grav. 30, 115016 (2013). [arXiv:1301.0879]

  449. C. Barceló, R. Carballo-Rubio, L.J. Garay, Unimodular gravity and general relativity from graviton self-interactions. Phys. Rev. D 89, 124019 (2014). [arXiv:1401.2941]

  450. C. Barceló, R. Carballo-Rubio, L.J. Garay, Absence of cosmological constant problem in special relativistic field theory of gravity. arXiv:1406.7713

  451. A. Padilla, I.D. Saltas, A note on classical and quantum unimodular gravity. Eur. Phys. J. C 75, 561 (2015). [arXiv:1409.3573]

  452. R. Bufalo, M. Oksanen, A. Tureanu, How unimodular gravity theories differ from general relativity at quantum level. Eur. Phys. J. C 75, 477 (2015). [arXiv:1505.04978]

  453. A. Basak, O. Fabre, S. Shankaranarayanan, Cosmological perturbation of unimodular gravity and general relativity are identical. Gen. Relat. Grav. 48, 123 (2016). [arXiv:1511.01805]

  454. E.I. Guendelman, A.B. Kaganovich, Principle of nongravitating vacuum energy and some of its consequences. Phys. Rev. D 53, 7020 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  455. E.I. Guendelman, A.B. Kaganovich, Gravitational theory without the cosmological constant problem. Phys. Rev. D 55, 5970 (1997). [arXiv:gr-qc/9611046]

  456. E.I. Guendelman, Scale invariance, new inflation and decaying lambda terms. Mod. Phys. Lett. A 14, 1043 (1999). [arXiv:gr-qc/9901017]

  457. E.I. Guendelman, A.B. Kaganovich, Dynamical measure and field theory models free of the cosmological constant problem. Phys. Rev. D 60, 065004 (1999). [arXiv:gr-qc/9905029]

  458. M. Fierz, W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 173, 211 (1939)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  459. G.E. Volovik, Superfluid analogies of cosmological phenomena. Phys. Rep. 351, 195 (2001). [arXiv:gr-qc/0005091]

  460. C. Barceló, S. Liberati, M. Visser, Analogue gravity. Living Rev. Relat. 14, 3 (2011)

    ADS  MATH  Google Scholar 

  461. G.E. Volovik, Vacuum energy and cosmological constant: view from condensed matter. J. Low Temp. Phys. 124, 25 (2001). [arXiv:gr-qc/0101111]

  462. G.E. Volovik, Cosmological constant and vacuum energy. Ann. Phys. (Berlin) 14, 165 (2005). [arXiv:gr-qc/0405012]

  463. G.E. Volovik, Vacuum energy: myths and reality. Int. J. Mod. Phys. D 15, 1987 (2006). [arXiv:gr-qc/0604062]

  464. G. Jannes, G.E. Volovik, The cosmological constant: a lesson from the effective gravity of topological Weyl media. JETP Lett. 96, 215 (2012). [arXiv:1108.5086]

  465. F.R. Klinkhamer, G.E. Volovik, Self-tuning vacuum variable and cosmological constant. Phys. Rev. D 77, 085015 (2008). [arXiv:0711.3170]

  466. F.R. Klinkhamer, G.E. Volovik, Dynamic vacuum variable and equilibrium approach in cosmology. Phys. Rev. D 78, 063528 (2008). [arXiv:0806.2805]

  467. F.R. Klinkhamer, G.E. Volovik, Gluonic vacuum, q-theory, and the cosmological constant. Phys. Rev. D 79, 063527 (2009). [arXiv:0811.4347]

  468. D.G. Caldi, A. Chodos, Cosmological neutrino condensates. arXiv:hep-ph/9903416

  469. T. Inagaki, X. Meng, T. Murata, Dark energy problem in a four fermion interaction model. arXiv:hep-ph/0306010

  470. F. Giacosa, R. Hofmann, M. Neubert, A model for the very early universe. JHEP 0802, 077 (2008). [arXiv:0801.0197]

  471. S. Alexander, T. Biswas, The cosmological BCS mechanism and the big bang singularity. Phys. Rev. D 80, 023501 (2009). [arXiv:0807.4468]

  472. S. Alexander, T. Biswas, G. Calcagni, Cosmological Bardeen–Cooper–Schrieffer condensate as dark energy. Phys. Rev. D 81, 043511 (2010); Erratum-ibid. D 81, 069902(E) (2010). [arXiv:0906.5161]

  473. N.J. Popławski, Cosmological constant from quarks and torsion. Ann. Phys. (Berlin) 523, 291 (2011). [arXiv:1005.0893]

  474. J.M. Weller, Fermion condensate from torsion in the reheating era after inflation. Phys. Rev. D 88, 083511 (2013). [arXiv:1307.2423]

  475. S. Finazzi, S. Liberati, L. Sindoni, Cosmological constant: a lesson from Bose–Einstein condensates. Phys. Rev. Lett. 108, 071101 (2012). [arXiv:1103.4841]

  476. B.L. Hu, Can spacetime be a condensate? Int. J. Theor. Phys. 44, 1785 (2005). [arXiv:gr-qc/0503067]

  477. L. Sindoni, Emergent models for gravity: an overview of microscopic models. SIGMA 8, 027 (2012). [arXiv:1110.0686]

  478. H.C. Ohanian, Gravitons as Goldstone bosons. Phys. Rev. 184, 1305 (1969)

    Article  ADS  Google Scholar 

  479. D. Atkatz, Dynamical method for generating the gravitational interaction. Phys. Rev. D 17, 1972 (1978)

    Article  ADS  Google Scholar 

  480. S. Deser, Gravity from self-interaction redux. Gen. Relat. Grav. 42, 641 (2010). [arXiv:0910.2975]

  481. C. Barceló, S. Liberati, M. Visser, Analog gravity from field theory normal modes? Class. Quantum Grav. 18, 3595 (2001). [arXiv:gr-qc/0104001]

  482. C. Barceló, M. Visser, S. Liberati, Einstein gravity as an emergent phenomenon? Int. J. Mod. Phys. D 10, 799 (2001). [arXiv:gr-qc/0106002]

  483. P.C.W. Davies, Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609 (1975)

    Article  ADS  Google Scholar 

  484. W.G. Unruh, Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  485. G.W. Gibbons, S.W. Hawking, Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752 (1977)

    Article  ADS  Google Scholar 

  486. J.D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 23, 287 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  487. T. Jacobson, Thermodynamics of space-time: the Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995). [arXiv:gr-qc/9504004]

  488. T. Padmanabhan, Gravity and the thermodynamics of horizons. Phys. Rep. 406, 49 (2005). [arXiv:gr-qc/0311036]

  489. C. Eling, R. Guedens, T. Jacobson, Non-equilibrium thermodynamics of spacetime. Phys. Rev. Lett. 96, 121301 (2006). [arXiv:gr-qc/0602001]

  490. T. Padmanabhan, A. Paranjape, Entropy of null surfaces and dynamics of spacetime. Phys. Rev. D 75, 064004 (2007). [arXiv:gr-qc/0701003]

  491. D. Kothawala, T. Padmanabhan, Thermodynamic structure of Lanczos–Lovelock field equations from near-horizon symmetries. Phys. Rev. D 79, 104020 (2009). [arXiv:0904.0215]

  492. T. Padmanabhan, A physical interpretation of gravitational field equations. AIP Conf. Proc. 1241, 93 (2010). [arXiv:0911.1403]

  493. T. Padmanabhan, D. Kothawala, Lanczos–Lovelock models of gravity. Phys. Rep. 531, 115 (2013). [arXiv:1302.2151]

  494. K. Parattu, B.R. Majhi, T. Padmanabhan, Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm. Phys. Rev. D 87, 124011 (2013). [arXiv:1303.1535]

  495. T. Padmanabhan, General relativity from a thermodynamic perspective. Gen. Relat. Grav. 46, 1673 (2014). [arXiv:1312.3253]

  496. T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quantum Grav. 19, 5387 (2002). [arXiv:gr-qc/0204019]

  497. A. Paranjape, S. Sarkar, T. Padmanabhan, Thermodynamic route to field equations in Lanczos–Lovelock gravity. Phys. Rev. D 74, 104015 (2006). [arXiv:hep-th/0607240]

  498. D. Kothawala, S. Sarkar, T. Padmanabhan, Einstein’s equations as a thermodynamic identity: the cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Phys. Lett. B 652, 338 (2007). [arXiv:gr-qc/0701002]

  499. M. Akbar, R.-G. Cai, Thermodynamic behavior of field equations for f(R) gravity. Phys. Lett. B 648, 243 (2007). [arXiv:gr-qc/0612089]

  500. A.V. Frolov, L. Kofman, Inflation and de Sitter thermodynamics. JCAP 0305, 009 (2003). [arXiv:hep-th/0212327]

  501. R.-G. Cai, S.P. Kim, First law of thermodynamics and Friedmann equations of Friedmann–Robertson–Walker universe. JHEP 0502, 050 (2005). [arXiv:hep-th/0501055]

  502. G. Calcagni, de Sitter thermodynamics and the braneworld. JHEP 0509, 060 (2005). [arXiv:hep-th/0507125]

  503. M. Akbar, R.-G. Cai, Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B 635, 7 (2006). [arXiv:hep-th/0602156]

  504. M. Akbar, R.-G. Cai, Thermodynamic behavior of Friedmann equations at the apparent horizon of the FRW universe. Phys. Rev. D 75, 084003 (2007). [arXiv:hep-th/0609128]

  505. R.-G. Cai, L.-M. Cao, Unified first law and thermodynamics of the apparent horizon in the FRW universe. Phys. Rev. D 75, 064008 (2007). [arXiv:gr-qc/0611071]

  506. T. Padmanabhan, The atoms of space, gravity and the cosmological constant. Int. J. Mod. Phys. D 25, 1630020 (2016). [arXiv:1603.08658]

  507. T. Padmanabhan, Thermodynamics of horizons: a comparison of Schwarzschild, Rindler and de Sitter spacetimes. Mod. Phys. Lett. A 17, 923 (2002). [arXiv:gr-qc/0202078]

  508. T.M. Adamo, C.N. Kozameh, E.T. Newman, Null geodesic congruences, asymptotically flat space-times and their physical interpretation. Living Rev. Relat. 15, 1 (2012).

    ADS  MATH  Google Scholar 

  509. L. Susskind, The world as a hologram. J. Math. Phys. 36, 6377 (1995). [arXiv:hep-th/9409089]

  510. R. Bousso, A covariant entropy conjecture. JHEP 9907, 004 (1999). [arXiv:hep-th/9905177]

  511. T. Padmanabhan, The holography of gravity encoded in a relation between entropy, horizon area and action for gravity. Gen. Relat. Grav. 34, 2029 (2002). [arXiv:gr-qc/0205090]

  512. T. Padmanabhan, Holographic gravity and the surface term in the Einstein–Hilbert action. Braz. J. Phys. 35, 362 (2005). [arXiv:gr-qc/0412068]

  513. T. Padmanabhan, A new perspective on gravity and the dynamics of space-time. Int. J. Mod. Phys. D 14, 2263 (2005). [arXiv:gr-qc/0510015]

  514. A. Mukhopadhyay, T. Padmanabhan, Holography of gravitational action functionals. Phys. Rev. D 74, 124023 (2006). [arXiv:hep-th/0608120]

  515. R.C. Tolman, On the use of the energy-momentum principle in general relativity. Phys. Rev. 35, 875 (1930)

    Article  ADS  MATH  Google Scholar 

  516. A. Komar, Covariant conservation laws in general relativity. Phys. Rev. 113, 934 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  517. T. Padmanabhan, Entropy of static spacetimes and microscopic density of states. Class. Quantum Grav. 21, 4485 (2004). [arXiv:gr-qc/0308070]

  518. T. Padmanabhan, Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. Mod. Phys. Lett. A 25, 1129 (2010). [arXiv:0912.3165]

  519. T. Padmanabhan, Surface density of spacetime degrees of freedom from equipartition law in theories of gravity. Phys. Rev. D 81, 124040 (2010). [arXiv:1003.5665]

  520. T. Padmanabhan, Emergence and expansion of cosmic space as due to the quest for holographic equipartition. arXiv:1206.4916

  521. T. Padmanabhan, Emergent perspective of gravity and dark energy. Res. Astron. Astrophys. 12, 891 (2012). [arXiv:1207.0505]

  522. T. Padmanabhan, Quantum structure of space-time and black hole entropy. Phys. Rev. Lett. 81, 4297 (1998). [arXiv:hep-th/9801015]

  523. T. Padmanabhan, Event horizon: magnifying glass for Planck length physics. Phys. Rev. D 59, 124012 (1999). [arXiv:hep-th/9801138]

  524. M. Arzano, G. Calcagni, Black-hole entropy and minimal diffusion. Phys. Rev. D 88, 084017 (2013). [arXiv:1307.6122]

  525. D. Kothawala, T. Padmanabhan, Entropy density of spacetime as a relic from quantum gravity. Phys. Rev. D 90, 124060 (2014). [arXiv:1405.4967]

  526. D. Kothawala, T. Padmanabhan, Entropy density of spacetime from the zero point length. Phys. Lett. B 748, 67 (2015). [arXiv:1408.3963]

  527. P. Hořava, D. Minic, Probable values of the cosmological constant in a holographic theory. Phys. Rev. Lett. 85, 1610 (2000). [arXiv:hep-th/0001145]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calcagni, G. (2017). Cosmological Constant Problem. In: Classical and Quantum Cosmology. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-41127-9_7

Download citation

Publish with us

Policies and ethics