Skip to main content

Development of a Virtual Simulator for Microanastomosis: New Opportunities and Challenges

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9769))

Abstract

The paper deals with the development of virtual surgical simulator for microanastomosis developed within the INTERREG (Italy-Greece) MICRO project. Microanastomosis is a surgical technique that involves, under optical magnification, the conjunction of blood vessels of a few millimeters diameter and is used also to support the surgical treatment of tumours. This manuscript describes the two principal solutions analysed during the progress of the MICRO project. The first step concerns the development of the simulator using the Unity3D engine; the second step describes an evolution of the surgical simulator to support remote control by a haptic interface via web using the WebGL platform based on JavaScript code. For both, a force feedback module has been implemented that reads data coming from the simulator and converts them to generate a servo control action on the haptic interface. For both solutions, some results of the implemented simulator are described .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, J.: Research on key technologies base Unity3D game engine. In: ICCSE 2012 - Proceedings of 2012 7th International Conference on Computer Science and Education, pp. 695–699 (2012)

    Google Scholar 

  2. Unity3D_Guide, http://docs.unity3d.com/Manual/UnityManual.html

  3. webgl_Guide, http://ptgmedia.pearsoncmg.com/images/9780321902924/samplepages/0321902920.pdf

  4. webgl_homepage, http://www.khronos.org/webgl/

  5. Erel, E., Aiyenibe, B., Butler, P.E.M.: Microsurgery simulators in virtual reality: review. Microsurgery 23, 147–152 (2003)

    Article  Google Scholar 

  6. Alaraj, A., Lemole, M.G., Finkle, J.H., Yudkowsky, R., Wallace, A., Luciano, C., Banerjee, P.P., Rizzi, S.H., Charbel, F.T.: Virtual reality training in neurosurgery: review of current status and future applications. Surg. Neurol. Int. 2, 52 (2011)

    Article  Google Scholar 

  7. Malone, H.R., Syed, O.N., Downes, M.S., D’ambrosio, A.L., Quest, D.O., Kaiser, M.G.: Simulation in neurosurgery: a review of computer-based simulation environments and their surgical applications. Neurosurgery 67, 1105–1116 (2010)

    Article  Google Scholar 

  8. Davies, J., Khatib, M., Bello, F.: Open Surgical Simulation - a Review. J. Surg. Educ. 70, 618–627 (2013)

    Article  Google Scholar 

  9. Ricciardi, F., Pastorelli, E., Paolis, L.T.D., Herrmann, H.: Scalable medical viewer for virtual reality environments. In: Augmented and Virtual Reality - Second International Conference, AVR 2015, Lecce, Italy, 31 August – 3 September 2015, Proceedings, pp. 233–243 (2015)

    Google Scholar 

  10. Livatino, S., De Paolis, L.T., D’Agostino, M., Zocco, A., Agrimi, A., De Santis, A., Bruno, L.V., Lapresa, M.: Stereoscopic visualization and 3-D technologies in medical endoscopic teleoperation. IEEE Trans. Industr. Electron. 62, 525–535 (2015)

    Article  Google Scholar 

  11. O’Toole, R.V., Playter, R.R., Krummel, T.M., Blank, W.C., Cornelius, N.H., Roberts, W.R., Bell, W.J., Raibert, M.: Measuring and developing suturing technique with a virtual reality surgical simulator. J. Am. Coll. Surg. 189, 114–127 (1999)

    Article  Google Scholar 

  12. Mimic Technologies MSim 2.1 software upgrade enables dV-Trainer customers to perform tube anastomosis and tube closure exercises. http://www.prweb.com/releases/2013/8/prweb10999321.htm. Accessed 25 Feb 2016

  13. dV-Trainer - Proven, cost-effective training for the da Vinci Surgical System. http://www.mimicsimulation.com/products/dv-trainer/. Accessed 25 Feb 2016

  14. Hüsken, N., Schuppe, O., Sismanidis, E., Beier, F.: MicroSim-a microsurgical training simulator. In: Studies in Health Technology and Informatics, pp. 205–209 (2013)

    Google Scholar 

  15. Wang, F., Su, E., Burdet, E., Bleuler, H.: Development of a microsurgery training system. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 1935–1938 (2008)

    Google Scholar 

  16. Park, Y., Shinke, M., Kanemitsu, N., Yagi, T., Azuma, T., Shiraishi, Y., Kormos, R., Umezu, M.: A surgical training simulator for quantitative assessment of the anastomotic technique of coronary artery bypass Grafting. In: IFMBE Proceedings, pp. 1179–1182 (2009)

    Google Scholar 

  17. Brown, N., Natsupakpong, S., Johannsen, S., Manjila, S., Cai, Q., Liberatore, V., Cohen, A.R., Cavusoglu, M.C.: Virtual environment-based training simulator for endoscopic third ventriculostomy. Stud. Health Technol. Inform. 119, 73–75 (2006)

    Google Scholar 

  18. Lemole, G.M., Banerjee, P.P., Luciano, C., Neckrysh, S., Charbel, F.T.: Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery 61, 142–148 (2007)

    Article  Google Scholar 

  19. Huang, D., Tang, W., Ding, Y., Wan, T., Chen, Y.: An interactive 3D preoperative planning and training system for minimally invasive vascular surgery. In: 2011 12th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 443–449 (2011)

    Google Scholar 

  20. Huang, D., Tang, W., Wan, T.R., John, N.W., Gould, D., Ding, Y., Chen, Y.: A new approach to haptic rendering of guidewires for use in minimally invasive surgical simulation. Comput. Anim. Virtual Worlds 22, 261–268 (2011)

    Article  Google Scholar 

  21. Brown, J., Sorkin, S., Bruyns, C., Latombe, J.-C., Montgomery, K., Stephanides, M.: Real-time simulation of deformable objects: tools and application. In: Conference Proceedings on Computer Animation, pp. 228–236 (2001)

    Google Scholar 

  22. Chen, D., Gourishankar, V., Rawley, C., Grinstein, G.: The QuickHaptics microAPI: enabling haptic mashups. In: 2010 IEEE Haptics Symposium, HAPTICS 2010, pp. 269–272 (2010)

    Google Scholar 

  23. Culbertson, H., Lopez Delgado, J.J., Kuchenbecker, K.J.: One hundred data-driven haptic texture models and open-source methods for rendering on 3D objects. In: 2014 IEEE Haptics Symposium (HAPTICS), pp. 319–325 (2014)

    Google Scholar 

  24. Yamaguchi, T., Oshima, K., Hirano, Y., Makishima, A., Harada, T., Richard, P.: Component-based authoring tool for haptic navigation. In: Proceedings of the 10th International Conference on Computer Graphics Theory and Applications (VISIGRAPP 2015), pp. 486–491 (2015)

    Google Scholar 

  25. Unity3D_SDK_Guide, http://docs.unity3d.com/Manual/android-sdksetup.html

  26. Geomagic-Touch_Device_Guide, http://dl.geomagic.com/binaries/support/downloads/Sensable/3DS/Geomagic-Touch_Device_Guide.pdf

  27. OpenHaptics Toolkit - Programmer’s guide, http://www.geomagic.com/files/4013/4851/4367/OpenHaptics_ProgGuide.pdf

  28. The ZeroMQ Guide - for C Developers, http://zguide.wdfiles.com/local–files/main%3A_start/zguide-c.pdf

  29. Müller, M., Chentanez, N.: Solid simulation with oriented particles. In: ACM SIGGRAPH 2011 Papers, British Columbia, Canada, pp. 92:1–92:10. ACM, Vancouver (2011)

    Google Scholar 

  30. Chen, X.: Real-time Physics Based Simulation for 3D Computer Graphics, http://scholarworks.gsu.edu/cs_diss/79, (2013)

  31. Maggiorini, D., Ripamonti, L.A., Panzeri, S.: Follow the leader: a scalable approach for realistic group behavior of roaming NPCs in MMO games. In: Proceedings of the Twelfth European Conference on the Synthesis and Simulation of Living Systems: Advances in Artificial Life, ECAL 2013, Sicily, Italy, 2–6 September 2013, pp. 706–712 (2013)

    Google Scholar 

  32. Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Graph. 32, 214:1–214:7 (2013)

    Google Scholar 

  33. nvidia_SDK_Guide, http://download.nvidia.com/developer/cuda/seminar/TDCI_PhysX.pdf

  34. Hernandez-Belmonte, U.H., Ayala-Ramirez, V., Sanchez-Yanez, R.E.: A mobile robot simulator using a game development engine. In: Proceedings of the 1st Robotics Summer Meeting, 27–28 June 2011, pp. 5–11 (2011)

    Google Scholar 

  35. Craighead, J., Burke, J., Murphy, R.: Using the unity game engine to develop SARGE: a case study. Computer 4552, 366 (2008)

    Google Scholar 

  36. Cadavid, A.N., Ibarra, D.G., Salcedo, S.L.: Using 3-D video game technology in channel modeling. IEEE Access. 2, 1652–1659 (2014)

    Article  Google Scholar 

  37. nvidia_library_Guide, https://developer.nvidia.com/physx-sdk

  38. Qin, J., Chui, Y.P., Pang, W.M., Choi, K.S., Heng, P.A.: Learning blood management in orthopedic surgery through gameplay. IEEE Comput. Graph. Appl. 30, 45–57 (2010)

    Google Scholar 

  39. Lin, Y., Wang, X., Wu, F., Chen, X., Wang, C., Shen, G.: Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. J. Biomed. Inform. 48, 122–129 (2014)

    Article  Google Scholar 

  40. nodejs_Guide, http://www.tutorialspoint.com/nodejs/pdf/nodejs_express_framework.pdf

  41. Nazarov, J.G.R.: Native browser support for 3D rendering and physics using WebGL, HTML5 and Javascript. In: BCI 2013, 19–21 September 2013, Thessaloniki, Greece, pp. 21–24 (2013)

    Google Scholar 

  42. tree_homepage, http://mrdoob.github.com/three.js/

  43. websocket, https://www.ietf.org/proceedings/80/slides/hybi-2.pdf

  44. Mitchell, J.D., Siegel, M.L., Schiefelbein, M.C.F., Babikyan, A.P.: Applying publish-subscribe to communications-on-the-move node control. Lincoln Lab. J. 16(2), 413–430 (2007)

    Google Scholar 

  45. Netmq_homepage, http://netmq.readthedocs.org/en/latest/

  46. Birr, S., Mönch, J., Sommerfeld, D., Preim, U., Preim, B.: The LiverAnatomyExplorer: a WebGL-based surgical teaching tool. IEEE Comput. Graph. Appl. 33, 48–58 (2013)

    Article  Google Scholar 

  47. Tommaso De Paolis, L., Ricciardi, F., Giuliani, F.: Development of a serious game for laparoscopic suture training. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2014. LNCS, vol. 8853, pp. 90–102. Springer, Heidelberg (2014)

    Google Scholar 

  48. Ricciardi, F., De Paolis, L.T.: A comprehensive review of serious games in health professions. Int. J. Comput. Games Technol. 2014, e787968 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mongelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

De Luca, V., Meo, A., Mongelli, A., Vecchio, P., De Paolis, L.T. (2016). Development of a Virtual Simulator for Microanastomosis: New Opportunities and Challenges. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. Lecture Notes in Computer Science(), vol 9769. Springer, Cham. https://doi.org/10.1007/978-3-319-40651-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40651-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40650-3

  • Online ISBN: 978-3-319-40651-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics