Skip to main content

ANCA-Associated Vasculitis and the Mechanisms of Tissue Injury

  • Chapter
  • First Online:
  • 700 Accesses

Abstract

ANCA associated vasculitides (AAVs) comprise four different disease entities: I) granulomatosis with polyangiitis (GPA, formerly Wegener’s granulomatosis), II) microscopic polyangiitis (MPA), III) eosinophilic granulomatosis with polyangiitis (EGPA, formerly Churg-Strauss syndrome), and IV) renal-limited vasculitis or isolated pauci-immune necrotizing and crescentic glomerulonephritis (NCGN). Experimental data support the notion that ANCA-induced activation of both neutrophils and monocytes is one of the main pathogenic mechanisms involved in disease induction. Binding of ANCA IgG to surface expressed ANCA antigens on myeloid cells leads to generation of reactive oxygen species (ROS), degranulation and activation of proteases, and formation of neutrophil extracellular traps (NET). Finally, activation of the complement system in AAVs by ANCA stimulated neutrophils leads to generation of C5a, which plays an important role in an amplifying inflammatory loop.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, Flores-Suarez LF, Gross WL, Guillevin L, Hagen EC, Hoffman GS, Jayne DR, Kallenberg CGM, Lamprecht P, Langford CA, Luqmani RA, Mahr AD, Matteson EL, Merkel PA, Ozen S, Pusey CD, Rasmussen N, Rees AJ, Scott DGI, Specks U, Stone JH, Takahashi K, Watts RA (2013) 2012 revised international Chapel Hill consensus conference nomenclature of vasculitides. Arthritis Rheum 65:1–11

    Article  CAS  PubMed  Google Scholar 

  2. Falk RJ, Jennette JC (2002) ANCA are pathogenic – oh yes they are! J Am Soc Nephrol 13:1977–1979

    PubMed  Google Scholar 

  3. Jennette JC, Falk RJ, Gasim AH (2011) Pathogenesis of antineutrophil cytoplasmic autoantibody vasculitis. Curr Opin Nephrol Hypertens 20:263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kain R, Matsui K, Exner M, Binder S, Schaffner G, Sommer EM, Kerjaschki D (1995) A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells. J Exp Med 181:585–597

    Article  CAS  PubMed  Google Scholar 

  5. Kain R, Exner M, Brandes R, Ziebermayr R, Cunningham D, Alderson CA, Davidovits A, Raab I, Jahn R, Ashour O, Spitzauer S, Sunder-Plassmann G, Fukuda M, Klemm P, Rees AJ, Kerjaschki D (2008) Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med 14:1088–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kain R, Tadema H, McKinney EF, Benharkou A, Brandes R, Peschel A, Hubert V, Feenstra T, Sengölge G, Stegeman C, Heeringa P, Lyons PA, Smith KGC, Kallenberg C, Rees AJ (2012) High prevalence of autoantibodies to hLAMP-2 in anti-neutrophil cytoplasmic antibody-associated vasculitis. J Am Soc Nephrol 23:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peschel A, Basu N, Benharkou A, Brandes R, Brown M, Dieckmann R, Rees AJ, Kain R (2014) Autoantibodies to hLAMP-2 in ANCA-negative pauci-immune focal necrotizing GN. J Am Soc Nephrol 25:455–463

    Article  CAS  PubMed  Google Scholar 

  8. Mueller A, Holl-Ulrich K, Gross WL (2013) Granuloma in ANCA-associated vasculitides: another reason to distinguish between syndromes? Curr Rheumatol Rep 15:376

    Article  PubMed  Google Scholar 

  9. Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DRW, Baslund B, Brenchley P, Bruchfeld A, Chaudhry AN, Cohen Tervaert JW, Deloukas P, Feighery C, Gross WL, Guillevin L, Gunnarsson I, Harper L, Hrušková Z, Little MA, Martorana D, Neumann T, Ohlsson S, Padmanabhan S, Pusey CD, Salama AD, Sanders J-SF, Savage CO, Segelmark M, Stegeman CA, Tesař V, Vaglio A, Wieczorek S, Wilde B, Zwerina J, Rees AJ, Clayton DG, Smith KGC (2012) Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med 367:214–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie G, Roshandel D, Sherva R, Monach PA, Lu EY, Kung T, Carrington K, Zhang SS, Pulit SL, Ripke S, Carette S, Dellaripa PF, Edberg JC, Hoffman GS, Khalidi N, Langford CA, Mahr AD, St Clair EW, Seo P, Specks U, Spiera RF, Stone JH, Ytterberg SR, Raychaudhuri S, de Bakker PIW, Farrer LA, Amos CI, Merkel PA, Siminovitch KA (2013) Association of granulomatosis with polyangiitis (Wegener’s) with HLA-DPB1*04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum 65:2457–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wieczorek S, Holle JU, Cohen Tervaert JW, Harper L, Moosig F, Gross WL, Epplen JT (2014) The SEM6A6 locus is not associated with granulomatosis with polyangiitis or other forms of antineutrophil cytoplasmic antibody-associated vasculitides in Europeans: comment on the article by Xie et al. Arthritis Rheumatol (Hoboken) 66:1400–1401

    Article  Google Scholar 

  12. Bauer S, Abdgawad M, Gunnarsson L, Segelmark M, Tapper H, Hellmark T (2007) Proteinase 3 and CD177 are expressed on the plasma membrane of the same subset of neutrophils. J Leukoc Biol 81:458–464

    Article  CAS  PubMed  Google Scholar 

  13. Von Vietinghoff S, Tunnemann G, Eulenberg C, Wellner M, Cristina Cardoso M, Luft FC, Kettritz R (2007) NB1 mediates surface expression of the ANCA antigen proteinase 3 on human neutrophils. Blood 109:4487–4493

    Article  Google Scholar 

  14. Schreiber A, Luft FC, Kettritz R (2004) Membrane proteinase 3 expression and ANCA-induced neutrophil activation. Kidney Int 65:2172–2183

    Article  CAS  PubMed  Google Scholar 

  15. Rarok AA, Stegeman CA, Limburg PC, Kallenberg CGM (2002) Neutrophil membrane expression of proteinase 3 (PR3) is related to relapse in PR3-ANCA-associated vasculitis. J Am Soc Nephrol 13:2232–2238

    Article  CAS  PubMed  Google Scholar 

  16. Witko-Sarsat V, Lesavre P, Lopez S, Bessou G, Hieblot C, Prum B, Noël LH, Guillevin L, Ravaud P, Sermet-Gaudelus I, Timsit J, Grünfeld JP, Halbwachs-Mecarelli L (1999) A large subset of neutrophils expressing membrane proteinase 3 is a risk factor for vasculitis and rheumatoid arthritis. J Am Soc Nephrol 10:1224–1233

    CAS  PubMed  Google Scholar 

  17. Schreiber A (2015) CD177/NB1 receptor expression is dynamically regulated in sepsis patients. Immunohematol Am Red Cross 31:128–129

    Google Scholar 

  18. Jerke U, Rolle S, Dittmar G, Bayat B, Santoso S, Sporbert A, Luft F, Kettritz R (2011) Complement receptor Mac-1 is an adaptor for NB1 (CD177)-mediated PR3-ANCA neutrophil activation. J Biol Chem 286:7070–7081

    Article  CAS  PubMed  Google Scholar 

  19. Sachs UJH, Andrei-Selmer CL, Maniar A, Weiss T, Paddock C, Orlova VV, Choi EY, Newman PJ, Preissner KT, Chavakis T, Santoso S (2007) The neutrophil-specific antigen CD177 is a counter-receptor for platelet endothelial cell adhesion molecule-1 (CD31). J Biol Chem 282:23603–23612

    Article  CAS  PubMed  Google Scholar 

  20. Bayat B, Werth S, Sachs UJH, Newman DK, Newman PJ, Santoso S (2010) Neutrophil transmigration mediated by the neutrophil-specific antigen CD177 is influenced by the endothelial S536N dimorphism of platelet endothelial cell adhesion molecule-1. J Immunol (Baltimore 1950) 184:3889–3896

    Article  CAS  Google Scholar 

  21. Kuckleburg CJ, Tilkens SB, Santoso S, Newman PJ (2012) Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils. J Immunol (Baltimore 1950) 188:2419–2426

    Article  CAS  Google Scholar 

  22. Roth AJ, Brown MC, Smith RN, Badhwar AK, Parente O, Chung H chul, Bunch DO, McGregor JG, Hogan SL, Hu Y, Yang J-J, Berg EA, Niles J, Jennette JC, Preston GA, Falk RJ (2012) Anti-LAMP-2 antibodies are not prevalent in patients with antineutrophil cytoplasmic autoantibody glomerulonephritis. J Am Soc Nephrol 23:545–555

    Google Scholar 

  23. Yang JJ, Pendergraft WF, Alcorta DA, Nachman PH, Hogan SL, Thomas RP, Sullivan P, Jennette JC, Falk RJ, Preston GA (2004) Circumvention of normal constraints on granule protein gene expression in peripheral blood neutrophils and monocytes of patients with antineutrophil cytoplasmic autoantibody-associated glomerulonephritis. J Am Soc Nephrol 15:2103–2114

    Article  CAS  PubMed  Google Scholar 

  24. Ciavatta DJ, Yang J, Preston GA, Badhwar AK, Xiao H, Hewins P, Nester CM, Pendergraft WF, Magnuson TR, Jennette JC, Falk RJ (2010) Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J Clin Invest 120:3209–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roth AJ, Ooi JD, Hess JJ, van Timmeren MM, Berg EA, Poulton CE, McGregor J, Burkart M, Hogan SL, Hu Y, Winnik W, Nachman PH, Stegeman CA, Niles J, Heeringa P, Kitching AR, Holdsworth S, Jennette JC, Preston GA, Falk RJ (2013) Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J Clin Invest 123:1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olson SW, Owshalimpur D, Yuan CM, Arbogast C, Baker TP, Oliver D, Abbott KC (2013) Relation between asymptomatic proteinase 3 antibodies and future granulomatosis with polyangiitis. Clin J Am Soc Nephrol 8:1312–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Falk RJ, Terrell RS, Charles LA, Jennette JC (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A 87:4115–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Charles LA, Caldas ML, Falk RJ, Terrell RS, Jennette JC (1991) Antibodies against granule proteins activate neutrophils in vitro. J Leukoc Biol 50:539–546

    CAS  PubMed  Google Scholar 

  29. Morris H, Morgan MD, Wood AM, Smith SW, Ekeowa UI, Herrmann K, Holle JU, Guillevin L, Lomas DA, Perez J, Pusey CD, Salama AD, Stockley R, Wieczorek S, McKnight AJ, Maxwell AP, Miranda E, Williams J, Savage CO, Harper L (2011) ANCA-associated vasculitis is linked to carriage of the Z allele of α1 antitrypsin and its polymers. Ann Rheum Dis 70:1851–1856

    Article  CAS  PubMed  Google Scholar 

  30. Freeley SJ, Coughlan AM, Popat RJ, Dunn-Walters DK, Robson MG (2013) Granulocyte colony stimulating factor exacerbates antineutrophil cytoplasmic antibody vasculitis. Ann Rheum Dis 72:1053–1058

    Article  CAS  PubMed  Google Scholar 

  31. Gou S-J, Yuan J, Wang C, Zhao M-H, Chen M (2013) Alternative complement pathway activation products in urine and kidneys of patients with ANCA-associated GN. Clin J Am Soc Nephrol 8:1884–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R (2009) C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol 20:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hewins P, Morgan MD, Holden N, Neil D, Williams JM, Savage COS, Harper L (2006) IL-18 is upregulated in the kidney and primes neutrophil responsiveness in ANCA-associated vasculitis. Kidney Int 69:605–615

    Article  CAS  PubMed  Google Scholar 

  34. Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CG (1994) Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann Intern Med 120:12–17

    Article  CAS  PubMed  Google Scholar 

  35. Hong Y, Eleftheriou D, Hussain AAK, Price-Kuehne FE, Savage CO, Jayne D, Little MA, Salama AD, Klein NJ, Brogan PA (2012) Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles. J Am Soc Nephrol 23:49–62

    Article  CAS  PubMed  Google Scholar 

  36. Harper L, Radford D, Plant T, Drayson M, Adu D, Savage CO (2001) IgG from myeloperoxidase-antineutrophil cytoplasmic antibody-positive patients stimulates greater activation of primed neutrophils than IgG from proteinase 3-antineutrophil cytosplasmic antibody-positive patients. Arthritis Rheum 44:921–930

    Article  CAS  PubMed  Google Scholar 

  37. Xiao H, Heeringa P, Liu Z, Huugen D, Hu P, Maeda N, Falk RJ, Jennette JC (2005) The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am J Pathol 167:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Porges AJ, Redecha PB, Kimberly WT, Csernok E, Gross WL, Kimberly RP (1994) Anti-neutrophil cytoplasmic antibodies engage and activate human neutrophils via Fc gamma RIIa. J Immunol (Baltimore 1950) 153:1271–1280

    CAS  Google Scholar 

  39. Kocher M, Edberg JC, Fleit HB, Kimberly RP (1998) Antineutrophil cytoplasmic antibodies preferentially engage Fc gammaRIIIb on human neutrophils. J Immunol (Baltimore 1950) 161:6909–6914

    CAS  Google Scholar 

  40. Kettritz R, Jennette JC, Falk RJ (1997) Crosslinking of ANCA-antigens stimulates superoxide release by human neutrophils. J Am Soc Nephrol 8:386–394

    CAS  PubMed  Google Scholar 

  41. Nimmerjahn F, Ravetch JV (2011) FcγRs in health and disease. Curr Top Microbiol Immunol 350:105–125

    CAS  PubMed  Google Scholar 

  42. Smith KGC, Clatworthy MR (2010) FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10:328–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ooi JD, Gan P-Y, Chen T, Eggenhuizen PJ, Chang J, Alikhan MA, Odobasic D, Holdsworth SR, Kitching AR (2014) FcγRIIB regulates T-cell autoreactivity, ANCA production, and neutrophil activation to suppress anti-myeloperoxidase glomerulonephritis. Kidney Int 86:1140–1149

    Article  CAS  PubMed  Google Scholar 

  44. Kelley JM, Monach PA, Ji C, Zhou Y, Wu J, Tanaka S, Mahr AD, Johnson S, McAlear C, Cuthbertson D, Carette S, Davis JC, Dellaripa PF, Hoffman GS, Khalidi N, Langford CA, Seo P, St Clair EW, Specks U, Stone JH, Spiera RF, Ytterberg SR, Merkel PA, Edberg JC, Kimberly RP (2011) IgA and IgG antineutrophil cytoplasmic antibody engagement of Fc receptor genetic variants influences granulomatosis with polyangiitis. Proc Natl Acad Sci U S A 108:20736–20741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pankhurst T, Nash G, Williams J, Colman R, Hussain A, Savage C (2011) Immunoglobulin subclass determines ability of immunoglobulin (Ig)G to capture and activate neutrophils presented as normal human IgG or disease-associated anti-neutrophil cytoplasm antibody (ANCA)-IgG. Clin Exp Immunol 164:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Timmeren MM, van der Veen BS, Stegeman CA, Petersen AH, Hellmark T, Collin M, Heeringa P (2010) IgG glycan hydrolysis attenuates ANCA-mediated glomerulonephritis. J Am Soc Nephrol 21:1103–1114

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kettritz R, Schreiber A, Luft FC, Haller H (2001) Role of mitogen-activated protein kinases in activation of human neutrophils by antineutrophil cytoplasmic antibodies. J Am Soc Nephrol 12:37–46

    CAS  PubMed  Google Scholar 

  48. Van der Veen BS, Chen M, Müller R, van Timmeren MM, Petersen AH, Lee PA, Satchell SC, Mathieson PW, Saleem MA, Stegeman CA, Zwerina J, Molema G, Heeringa P (2011) Effects of p38 mitogen-activated protein kinase inhibition on anti-neutrophil cytoplasmic autoantibody pathogenicity in vitro and in vivo. Ann Rheum Dis 70:356–365

    Article  PubMed  Google Scholar 

  49. Kettritz R, Choi M, Butt W, Rane M, Rolle S, Luft FC, Klein JB (2002) Phosphatidylinositol 3-kinase controls antineutrophil cytoplasmic antibodies-induced respiratory burst in human neutrophils. J Am Soc Nephrol 13:1740–1749

    Article  CAS  PubMed  Google Scholar 

  50. Schreiber A, Rolle S, Peripelittchenko L, Rademann J, Schneider W, Luft FC, Kettritz R (2010) Phosphoinositol 3-kinase-gamma mediates antineutrophil cytoplasmic autoantibody-induced glomerulonephritis. Kidney Int 77:118–128

    Article  CAS  PubMed  Google Scholar 

  51. Hao J, Meng L-Q, Xu P-C, Chen M, Zhao M-H (2012) p38MAPK, ERK and PI3K signaling pathways are involved in C5a-primed neutrophils for ANCA-mediated activation. PLoS One 7:e38317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weidner S, Neupert W, Goppelt-Struebe M, Rupprecht HD (2001) Antineutrophil cytoplasmic antibodies induce human monocytes to produce oxygen radicals in vitro. Arthritis Rheum 44:1698–1706

    Article  CAS  PubMed  Google Scholar 

  53. Ralston DR, Marsh CB, Lowe MP (1997) Antineutrophil cytoplasmic antibodies induce monocyte IL-8 release. Role of surface proteinase-3, alpha1-antitrypsin, and Fcgamma receptors. J Clin Invest 100:1416–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weidner S, Carl M, Riess R, Rupprecht HD (2004) Histologic analysis of renal leukocyte infiltration in antineutrophil cytoplasmic antibody-associated vasculitis: importance of monocyte and neutrophil infiltration in tissue damage. Arthritis Rheum 50:3651–3657

    Article  PubMed  Google Scholar 

  55. Zhao L, David MZ, Hyjek E, Chang A, Meehan SM (2015) M2 macrophage infiltrates in the early stages of ANCA-associated pauci-immune necrotizing GN. Clin J Am Soc Nephrol 10:54–62

    Article  CAS  PubMed  Google Scholar 

  56. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJM, Liu Y-J, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80

    Article  CAS  PubMed  Google Scholar 

  57. O’Brien EC, Abdulahad WH, Rutgers A, Huitema MG, O’Reilly VP, Coughlan AM, Harrington M, Heeringa P, Little MA, Hickey FB (2015) Intermediate monocytes in ANCA vasculitis: increased surface expression of ANCA autoantigens and IL-1β secretion in response to anti-MPO antibodies. Sci Rep 5:11888

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schreiber A, Pham CTN, Hu Y, Schneider W, Luft FC, Kettritz R (2012) Neutrophil serine proteases promote IL-1β generation and injury in necrotizing crescentic glomerulonephritis. J Am Soc Nephrol 23:470–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Le Roux S, Pepper RJ, Dufay A, Néel M, Meffray E, Lamandé N, Rimbert M, Josien R, Hamidou M, Hourmant M, Cook HT, Charreau B, Larger E, Salama AD, Fakhouri F (2012) Elevated soluble Flt1 inhibits endothelial repair in PR3-ANCA-associated vasculitis. J Am Soc Nephrol 23:155–164

    Article  PubMed  Google Scholar 

  60. Nolan SL, Kalia N, Nash GB, Kamel D, Heeringa P, Savage COS (2008) Mechanisms of ANCA-mediated leukocyte-endothelial cell interactions in vivo. J Am Soc Nephrol 19:973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bajema IM, Hagen EC, de Heer E, van der Woude FJ, Bruijn JA (2001) Colocalization of ANCA-antigens and fibrinoid necrosis in ANCA-associated vasculitis. Kidney Int 60:2025–2030

    Article  CAS  PubMed  Google Scholar 

  62. Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, Gröne H-J, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huugen D, Xiao H, van Esch A, Falk RJ, Peutz-Kootstra CJ, Buurman WA, Tervaert JWC, Jennette JC, Heeringa P (2005) Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol 167:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuligowski MP, Kwan RYQ, Lo C, Wong C, James WG, Bourges D, Ooi JD, Abeynaike LD, Hall P, Kitching AR, Hickey MJ (2009) Antimyeloperoxidase antibodies rapidly induce alpha-4-integrin-dependent glomerular neutrophil adhesion. Blood 113:6485–6494

    Article  CAS  PubMed  Google Scholar 

  65. Calderwood JW, Williams JM, Morgan MD, Nash GB, Savage COS (2005) ANCA induces beta2 integrin and CXC chemokine-dependent neutrophil-endothelial cell interactions that mimic those of highly cytokine-activated endothelium. J Leukoc Biol 77:33–43

    CAS  PubMed  Google Scholar 

  66. Hu N, Westra J, Rutgers A, Doornbos-Van der Meer B, Huitema MG, Stegeman CA, Abdulahad WH, Satchell SC, Mathieson PW, Heeringa P, Kallenberg CGM (2011) Decreased CXCR1 and CXCR2 expression on neutrophils in anti-neutrophil cytoplasmic autoantibody-associated vasculitides potentially increases neutrophil adhesion and impairs migration. Arthritis Res Ther 13:R201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O’Sullivan KM, Lo CY, Summers SA, Elgass KD, McMillan PJ, Longano A, Ford SL, Gan P-Y, Kerr PG, Kitching AR, Holdsworth SR (2015) Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Int 88:1030–1046

    Article  PubMed  Google Scholar 

  68. Odobasic D, Kitching AR, Yang Y, O’Sullivan KM, Muljadi RCM, Edgtton KL, Tan DSY, Summers SA, Morand EF, Holdsworth SR (2013) Neutrophil myeloperoxidase regulates T-cell-driven tissue inflammation in mice by inhibiting dendritic cell function. Blood 121:4195–4204

    Article  CAS  PubMed  Google Scholar 

  69. Perera NC, Wiesmüller K-H, Larsen MT, Schacher B, Eickholz P, Borregaard N, Jenne DE (2013) NSP4 is stored in azurophil granules and released by activated neutrophils as active endoprotease with restricted specificity. J Immunol (Baltimore 1950) 191:2700–2707

    Article  CAS  Google Scholar 

  70. Pham CTN (2008) Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol 40:1317–1333

    Article  CAS  PubMed  Google Scholar 

  71. Schreiber A, Luft FC, Kettritz R (2015) Phagocyte NADPH oxidase restrains the inflammasome in ANCA-induced GN. J Am Soc Nephrol 26:411–424

    Google Scholar 

  72. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  73. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M (2014) Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med 20:511–517

    Article  CAS  PubMed  Google Scholar 

  74. Holdenrieder S, Eichhorn P, Beuers U, Samtleben W, Schoenermarck U, Zachoval R, Nagel D, Stieber P (2006) Nucleosomal DNA fragments in autoimmune diseases. Ann N Y Acad Sci 1075:318–327

    Article  CAS  PubMed  Google Scholar 

  75. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V (2015) Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349:316–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tillack K, Breiden P, Martin R, Sospedra M (2012) T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J Immunol (Baltimore 1950) 188:3150–3159

    Article  CAS  Google Scholar 

  77. Nakazawa D, Tomaru U, Suzuki A, Masuda S, Hasegawa R, Kobayashi T, Nishio S, Kasahara M, Ishizu A (2012) Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 64:3779–3787

    Article  CAS  PubMed  Google Scholar 

  78. Nakazawa D, Shida H, Tomaru U, Yoshida M, Nishio S, Atsumi T, Ishizu A (2014) Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J Am Soc Nephrol 25:990–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC (2007) Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol 170:52–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huugen D, van Esch A, Xiao H, Peutz-Kootstra CJ, Buurman WA, Tervaert JWC, Jennette JC, Heeringa P (2007) Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int 71:646–654

    Article  CAS  PubMed  Google Scholar 

  81. Xiao H, Dairaghi DJ, Powers JP, Ertl LS, Baumgart T, Wang Y, Seitz LC, Penfold MET, Gan L, Hu P, Lu B, Gerard NP, Gerard C, Schall TJ, Jaen JC, Falk RJ, Jennette JC (2014) C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol 25:225–231

    Article  CAS  PubMed  Google Scholar 

  82. Gou S-J, Yuan J, Chen M, Yu F, Zhao M-H (2013) Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int 83:129–137

    Article  CAS  PubMed  Google Scholar 

  83. Manenti L, Vaglio A, Gnappi E, Maggiore U, Allegri L, Allinovi M, Urban ML, Delsante M, Galetti M, Nicastro M, Pilato FP, Buzio C (2015) Association of serum C3 concentration and histologic signs of thrombotic microangiopathy with outcomes among patients with ANCA-associated renal vasculitis. Clin J Am Soc Nephrol 10:2143–2151

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Schreiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schreiber, A., Choi, M. (2016). ANCA-Associated Vasculitis and the Mechanisms of Tissue Injury. In: Dammacco, F., Ribatti, D., Vacca, A. (eds) Systemic Vasculitides: Current Status and Perspectives. Springer, Cham. https://doi.org/10.1007/978-3-319-40136-2_13

Download citation

Publish with us

Policies and ethics