Skip to main content

Epiphyte Taxonomy and Evolutionary Trends

  • Chapter
  • First Online:
Plants on Plants – The Biology of Vascular Epiphytes

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

About 28,000 species, c. 9 % of all vascular plants, have an exclusively or primarily epiphytic lifestyle. In addition, there are about 800 species of hemiepiphytes in genera like Ficus, Coussapoa, or Clusia. The distribution of epiphytes among the 11 subclasses of land plants is highly biased – epiphytism is particularly prominent among polypod ferns and among monocotyledons. One family stands out more than any other among the 76 families with epiphytic members, Orchidaceae. This family alone accounts for about 68 % of all species. In the following, all important families with epiphytes are briefly introduced and a detailed list of epiphyte genera with species numbers is provided. Inherent problems with the compilation of such a list are discussed as well as the likelihood of quantitative and qualitative changes in the future. Phylogenetic analyses of taxa with epiphytic and terrestrial members are the most important tool to deduce evolutionary trends, since the fossil record of epiphytes is very poor. Based on the taxonomic participation and geographical distribution I then ask the question how representative our current understanding of epiphyte ecology really is. A bibliometric analysis shows that the ecological literature of the last 120 years has been highly biased toward a few taxonomic groups and particular regions. I alert the reader that all conclusions in following chapters will inevitably carry this bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard DJ, Petru M, Mill RR (2005) An ecological study of Pedicularis dendrothauma, an arboreal hemiparasitic epiphyte from Nepal. Folia Geobot 40:135–149

    Article  Google Scholar 

  • Alves RJV, Kolbek J (2000) Primary succession on quartzite cliffs in Minas Gerais, Brazil. Biologia 55:69–83

    Google Scholar 

  • Arens K, Pedraita M (1948) Noticia ecológica sobre Brassavola tuberculata Hook. Orquídea 10:1–8

    Google Scholar 

  • Atwood JT (1986) The size of the Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana 9:171–186

    Google Scholar 

  • Beerling DJ, Woodward FI (1997) Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Bot J Linn Soc 124:137–153. doi:10.1111/j.1095-8339.1997.tb01787.x

    Article  Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH, Atwood JT (1984) Orchidaceae: ancestral habitats and current status in forest canopies. Syst Bot 9:155–165

    Article  Google Scholar 

  • Bryan CL, Clarkson BD, Clearwater MJ (2011) Biological flora of New Zealand 12: Griselinia lucida, puka, akapuka, akakopuka, shining broadleaf. N Z J Bot 49:461–479. doi:10.1080/0028825x.2011.603342

    Article  Google Scholar 

  • Callmander MW, Booth TJ, Beentje H, Buerki S (2013) Update on the systematics of Benstonea (Pandanaceae): when a visionary taxonomist foresees phylogenetic relationships. Phytotaxa 112:57–60

    Article  Google Scholar 

  • Chase MW, Reveal JL (2009) A phylogenetic classification of the land plants to accompany APG III. Bot J Linn Soc 161:122–127

    Article  Google Scholar 

  • Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill R, Chase MW (2011a) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19:55–70

    Article  Google Scholar 

  • Christenhusz MJM, Zhang X-C, Schneider H (2011b) A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19:7–54

    Article  Google Scholar 

  • Clark JL, Herendeen PS, Skog LE, Zimmer EA (2006) Phylogenetic relationships and generic boundaries in the Episcieae (Gesneriaceae) inferred from nuclear, chloroplast, and morphological data. Taxon 55:313–336

    Article  Google Scholar 

  • Conran JG, Bannister JM, Lee DE (2009) Earliest orchid macrofossils: early Miocene Dendrobium and Earina (Orchidaceae: Epidendroideae) from New Zealand. Am J Bot 96:466–474. doi:10.3732/ajb.0800269

    Article  PubMed  Google Scholar 

  • Croat TB (1988) Ecology and life forms of Araceae. Aroideana 11:4–55

    Google Scholar 

  • Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Am Nat 165:E36–E65. doi:10.1086/428296

    Article  PubMed  Google Scholar 

  • Dawson JW, Sneddon BV (1969) The New Zealand rain forest: a comparison with tropical rain forest. Pac Sci 23:131–147

    Google Scholar 

  • DiMichelle WA, Phillips TL (2002) The ecology of Paleozoic ferns. Rev Palaeobot Palynol 119:143–159

    Article  Google Scholar 

  • Dubuisson JY, Hennequin S, Rakotondrainibe F, Schneider H (2003) Ecological diversity and adaptive tendencies in the tropical fern Trichomanes L. (Hymenophyllaceae) with special reference to climbing and epiphytic habits. Bot J Linn Soc 142:41–63

    Article  Google Scholar 

  • Dubuisson JY, Schneider H, Hennequin S (2009) Epiphytism in ferns: diversity and history. C R Biol 332:120–128. doi:10.1016/j.crvi.2008.08.018

    Article  PubMed  Google Scholar 

  • Eggli U (ed) (2003) Illustrated handbook of succulent plants: Crassulaceae. Springer, Berlin

    Google Scholar 

  • Erwin T (1988) The tropical forest canopy. The heart of biotic diversity. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 123–129

    Google Scholar 

  • Field AR, Testo W, Bostock PD, Holtum JAM, Waycott M (2016) Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus and Phylloglossum. Mol Phylogenet Evol 94(Pt B):635–657. doi:10.1016/j.ympev.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  • Freiberg M (2001) The influence of epiphyte cover on branch temperature in a tropical tree. Plant Ecol 153:241–250

    Article  Google Scholar 

  • Frodin DG (2004) History and concepts of big plant genera. Taxon 53:753–776. doi:10.2307/4135449

    Article  Google Scholar 

  • Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233

    Article  Google Scholar 

  • Gianoli E (2004) Evolution of a climbing habit promotes diversification in flowering plants. Proc R Soc B-Biol Sci 271:2011–2015. doi:10.1098/rspb.2004.2827

    Article  Google Scholar 

  • Gómez NR, Tremblay RL, Meléndez-Ackerman E (2006) Distribution of life cycle stages in a lithophytic and epiphytic orchid. Folia Geobot 41:107–120

    Article  Google Scholar 

  • Gravendeel B, Smithson A, Slik FJW, Schuiteman A (2004) Epiphytism and pollinator specialization: drivers for orchid diversity? Philos Trans R Soc Lond B Biol Sci 359:1523–1535

    Article  PubMed  PubMed Central  Google Scholar 

  • Haston E, Richardson JE, Stevens PF, Chase MW, Harris DJ (2009) The linear angiosperm phylogeny group (LAPG) III: a linear sequence of the families in APG III. Bot J Linn Soc 161:128–131. doi:10.1111/j.1095-8339.2009.01000.x

    Article  Google Scholar 

  • Herrera FA, Jaramillo CA, Dilcher DL, Wing SL, Gómez-N C (2008) Fossil Araceae from a Paleocene Neotropical rainforest in Colombia. Am J Bot 95:1569–1583. doi:10.3732/ajb.0800172

    Article  PubMed  Google Scholar 

  • Holbrook NM, Putz F (1996) Physiology of tropical vines and hemiepiphytes: plants that climb up and plants that climb down. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman & Hall, New York, pp 363–394

    Chapter  Google Scholar 

  • Jacques-Félix H (2000) The discovery of a bromeliad in Africa: Pitcairnia feliciana. Selbyana 21:118–124

    Google Scholar 

  • Janssens SB, Fischer E, Stévart T (2010) New insights into the origin of two new epiphytic Impatiens species (Balsaminaceae) from West Central Africa based on molecular phylogenetic analyses. Taxon 59:1508–1518

    Google Scholar 

  • Johansson D (1974) Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suec 59:1–136

    Google Scholar 

  • Joppa LN, Roberts DL, Pimm SL (2010) How many species of flowering plants are there? Proc R Soc B Biol Sci. doi:10.1098/rspb.2010.1004

    Google Scholar 

  • Kress WJ (1986) The systematic distribution of vascular epiphytes: an update. Selbyana 9:2–22

    Google Scholar 

  • Kuijt J (1963) On the ecology and parasitism of the Costa Rican tree mistletoe, Gaiadendron punctatum (Ruiz & Pavon) G.Don. Can J Bot 41:927–938

    Article  Google Scholar 

  • Küper W, Kreft H, Nieder J, Köster N, Barthlott W (2004) Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. J Biogeogr 31:1477–1487

    Article  Google Scholar 

  • Lagomarsino L, Grusz A, Moran R (2012) Primary hemiepiphytism and gametophyte morphology in Elaphoglossum amygdalifolium (Dryopteridaceae). Brittonia 64:226–235. doi:10.1007/s12228-011-9216-y

    Google Scholar 

  • Luteyn JL (1989) Speciation and diversity of Ericaceae in neotropical montane vegetation. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic, London, pp 297–310

    Chapter  Google Scholar 

  • Madison M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2:1–13

    Google Scholar 

  • Mamay SH (1952) An epiphytic American species of Tubicaulis Cotta. Ann Bot 62:145–163

    Google Scholar 

  • Massa GW (1996) Factors affecting the distribution of a neotropical hemiepiphyte. MSc thesis, San Jose State University, San Jose

    Google Scholar 

  • McPherson S (2009) Pitcher plants of the old world. Redfern Natural History Productions, Poole

    Google Scholar 

  • Monteiro SHN, Selbach-Schnadelbach A, de Oliveira RP, van den Berg C (2010) Molecular phylogenetics of Galeandra (Orchidaceae: Catasetinae) based on plastid and nuclear DNA sequences. Syst Bot 35:476–486. doi:10.1600/036364410792495944

    Article  Google Scholar 

  • Nicolai V (1986) The bark of trees: thermal properties, microclimate and fauna. Oecologia 69:148–160

    Article  Google Scholar 

  • Phillips RD, Dixon KW, Peakall R (2012) Low population genetic differentiation in the Orchidaceae: implications for the diversification of the family. Mol Ecol 21:5208–5220. doi:10.1111/mec.12036

    Article  PubMed  Google Scholar 

  • Poole I, Page CN (2000) A fossil fern indicator of epiphytism in a Tertiary flora. New Phytol 148:117–125

    Article  Google Scholar 

  • Psenicka J, Oplustil S (2013) The epiphytic plants in the fossil record and its example from in situ tuff from Pennsylvanian of Radnice Basin (Czech Republic). Bull Geosci 88:401–416. doi:10.3140/bull.geosci.1376

    Article  Google Scholar 

  • Putz FE, Holbrook NM (1986) Notes on the natural history of hemiepiphytes. Selbyana 9:61–69

    Google Scholar 

  • Ramirez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE (2007) Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448:1042–1045

    Article  CAS  PubMed  Google Scholar 

  • Renner SS (1986) The neotropical epiphytic Melastomataceae: phytogeographic patterns, fruit types, and floral biology. Selbyana 9:104–111

    Google Scholar 

  • Rothwell GW (1991) Botryopteris forensis (Botryopteridaceae), a trunk epiphyte of the tree fern Psaronius. Am J Bot 78:782–788

    Article  Google Scholar 

  • Schimper AFW (1888) Die epiphytische Vegetation Amerikas, vol 2, Botanische Mitteilungen aus den Tropen. Gustav Fischer, Jena

    Google Scholar 

  • Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. Gustav Fischer, Jena

    Google Scholar 

  • Schmid JM, Mata SA, Schmidt RA (1991) Bark temperature patterns in ponderosa pine stands and their possible effects on mountain pine beetle behavior. Can J For Res 21:1439–1446

    Article  Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallon S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    Article  CAS  PubMed  Google Scholar 

  • Schuettpelz E, Pryer KM (2009) Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc Natl Acad Sci 106:11200–11205. doi:10.1073/pnas.0811136106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw AJ, Cox CJ, Goffinet B, Buck WR (2003) Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta). Evolution 57:2226–2241

    Article  CAS  PubMed  Google Scholar 

  • Shaw J (2008) Three new Crûg Farm introductions. Plantsman 7:39–42

    Google Scholar 

  • Su T, Jacques FMB, Liu Y-S, Xiang J, Xing Y, Huang Y, Zhou Z (2011) A new Drynaria (Polypodiaceae) from the upper Pliocene of Southwest China. Rev Palaeobot Palynol 164:132–142

    Article  Google Scholar 

  • Sundue MA, Testo WL, Ranker TA (2015) Morphological innovation, ecological opportunity, and the radiation of a major vascular epiphyte lineage. Evolution 69:2482–2495

    Article  PubMed  Google Scholar 

  • Tepe EJ, Bohs L (2011) A revision of Solanum section Herpystichum. Syst Bot 36:1068–1087. doi:10.1600/036364411x605074

    Article  Google Scholar 

  • The American Heritage Science Dictionary (2005) Houghton Mifflin Company. Massachusetts, Boston

    Google Scholar 

  • Tremblay RL (1997) Distribution and dispersion patterns of individuals in nine species of Lepanthes (Orchidaceae). Biotropica 29:38–45

    Article  Google Scholar 

  • Tsutsumi C, Kato M (2006) Evolution of epiphytes in Davalliaceae and related ferns. Bot J Linn Soc 151:495–510

    Article  Google Scholar 

  • Watkins JE Jr, Cardelus CL (2012) Ferns in an angiosperm world: cretaceous radiation into the epiphytic niche and diversification on the forest floor. Int J Plant Sci 173:695–710. doi:10.1086/665974

    Article  Google Scholar 

  • WCSP (2014) World checklist of selected plant families. Facilitated by the Royal Botanic Gardens, Kew. http://apps.kew.org/wcsp/. Retrieved Dec 2014

  • Wikström N, Kenrick P, Chase MW (1999) Epiphytism and terrestrialization in tropical Huperzia (Lycopodiaceae). Plant Syst Evol 218:221–243

    Article  Google Scholar 

  • Wilson EO (1992) The diversity of Life. Harvard University Herbaria, Cambridge

    Google Scholar 

  • Xing X, Gai X, Liu Q, Hart MM, Guo S (2015) Mycorrhizal fungal diversity and community composition in a lithophytic and epiphytic orchid. Mycorrhiza 25:289–296

    Article  CAS  PubMed  Google Scholar 

  • Ziegler AM, Eshel G, Rees PM, Rothfus TA, Rowley DB, Sunderlin D (2003) Tracing the tropics across land and sea: Permian to present. Lethaia 36:227–254. doi:10.1080/00241160310004657

    Article  Google Scholar 

  • Zotz G (2004) How prevalent is crassulacean acid metabolism among vascular epiphytes? Oecologia 138:184–192

    Article  PubMed  Google Scholar 

  • Zotz G (2005) Vascular epiphytes in the temperate zones—a review. Plant Ecol 176:173–183

    Article  Google Scholar 

  • Zotz G (2013) The systematic distribution of vascular epiphytes—a critical update. Bot J Linn Soc 171:453–481

    Article  Google Scholar 

  • Zotz G, List C (2003) Zufallsepiphyten—Pflanzen auf dem Weg nach oben? Bauhinia 17:25–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zotz, G. (2016). Epiphyte Taxonomy and Evolutionary Trends. In: Plants on Plants – The Biology of Vascular Epiphytes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-39237-0_2

Download citation

Publish with us

Policies and ethics