Skip to main content

Newton’s Method for Convex Optimization

  • Chapter
  • First Online:
Advances in Iterative Methods for Nonlinear Equations

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 10))

Abstract

In this chapter we deal with the convex optimization problem (COP). Using the generalized-Newton’s algorithm (GNA) we generate a sequence that converges to a solution of the COP. We use weak-center and weak Lipschitz-type conditions in our semilocal convergence analysis leading to a finer convergence analysis than in earlier studies. Numerical examples where earlier sufficient convergence conditions are not satisfied but our conditions are satisfied are also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argyros, I.K.: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169, 315–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Argyros, I.K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Argyros, I.K.: On the semilocal convergence of the Gauss-Newton method. Adv. Nonlinear Var. Inequal. 8, 93–99 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K.: Approximating solutions of equations using Newton’s method with a modified Newton’s method iterate as a starting point. Rev. Anal. Numér. Théor. Approx. 36, 123–138 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Argyros, I.K.: Concerning the semilocal convergence of Newton’s method and convex majorants. Rend. Circ. Mat. Palermo 57, 331–341 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Argyros, I.K.: Convergence and Applications of Newton-Type Iterations. Springer, New York (2009)

    Google Scholar 

  7. Argyros, I.K.: Concerning the convergence of Newton’s method and quadratic majorants, J. Appl. Math. Comput. 29, 391–400 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Argyros, I.K.: On a class of Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 228, 115–122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Argyros, I.K.: Local convergence of Newton’s method using Kantorovich’s convex majorants. Revue Anal. Numér. Théor. Approx. 39, 97–106 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Argyros, I.K.: A semilocal convergence analysis for directional Newton methods. Math. Comput. 80, 327–343 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Argyros, I.K., Hilout, S.: Extending the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 234, 2993–3006 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Argyros, I.K., Hilout, S.: Improved generalized differentiability conditions for Newton-like methods. J. Complex. 26, 316–333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Argyros, I.K., Hilout, S.: On the solution of systems of equations with constant rank derivatives. Numer. Algorithms 57, 235–253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Argyros, I.K., Hilout, S.: Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions. Numer. Algorithms 58, 23–52 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Argyros, I.K., Hilout, S.: On the semilocal convergence of Newton’s method using majorants and recurrent functions. J. Nonlinear Funct. Anal. Appl. (to appear)

    Google Scholar 

  16. Argyros, I.K., Hilout, S.: Improved local convergence of Newton’s method under weak majorant condition. J. Comput. Appl. Math. 236, 1892–1902 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newton’s method. J. Complex. 28, 364–387 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Argyros, I.K., Hilout, S.: Computational Methods in Nonlinear Analysis. Efficient Algorithms, Fixed Point Theory and Applications. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  19. Argyros, I.K., Cho, Y.J., Hilout, S.: Numerical Methods for Equations and Its Applications. CRC Press/Taylor and Francis Group, New York (2012)

    MATH  Google Scholar 

  20. Burke, J.V., Ferris, M.C.: A Gauss-Newton method for convex composite optimization. Math. Program. Ser. A 71, 179–194 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Chen, X., Yamamoto, T.: Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. Optim. 10, 37–48 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s majorants principle for Newton’s method. Comput. Optim. Appl. 42, 213–229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities. Image space analysis and separation. In: Vector Variational Inequalities and Vector Equilibria. Nonconvex Optimization and Its Applications, vol. 38, pp. 153–215. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  24. Giannessi, F., Moldovan, A., Pellegrini, L.: Metric regular maps and regularity for constrained extremum problems. In: Nonlinear Analysis and Optimization II. Optimization. Contemporary Mathematics, vol. 514, pp. 143–154. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  25. Häubler, W.M.: A Kantorovich-type convergence analysis for the Gauss-Newton method. Numer. Math. 48, 119–125 (1986)

    Article  MathSciNet  Google Scholar 

  26. Hiriart-Urruty, J.B, Lemaréchal, C.: Convex Analysis and Minimization Algorithms (two volumes). I. Fundamentals, II. Advanced Theory and Bundle Methods, vols. 305 and 306. Springer, Berlin (1993)

    Google Scholar 

  27. Kantorovich, L.V.: The majorant principle and Newton’s method. Doklady Akademii Nauk SSSR 76, 17–20 (1951) [in Russian]

    Google Scholar 

  28. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  29. Li, C., Ng, K.F.: Majorizing functions and convergence of the Gauss-Newton method for convex composite optimization. SIAM J. Optim. 18, 613–642 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, C., Wang, X.H.: On convergence of the Gauss-Newton method for convex composite optimization. Math. Program. Ser. A 91, 349–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, C., Zhang, W.-H., Jin, X.-Q.: Convergence and uniqueness properties of Gauss-Newton’s method. Comput. Math. Appl. 47, 1057–1067 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, C., Hu, N., Wang, J.: Convergence bahavior of Gauss-Newton’s method and extensions to the Smale point estimate theory. J. Complex. 26, 268–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. I. Sufficient optimality conditions. J. Optim. Theory Appl. 142, 147–163 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. II. Necessary optimality conditions. J. Optim. Theory Appl. 142, 165–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ng, K.F., Zheng, X.Y.: Characterizations of error bounds for convex multifunctions on Banach spaces. Math. Oper. Res. 29, 45–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Robinson, S.M.: Extension of Newton’s method to nonlinear functions with values in a cone. Numer. Math. 19, 341–347 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  37. Robinson, S.M.: Stability theory for systems of inequalities. I. Linear systems. SIAM J. Numer. Anal. 12, 754–769 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rockafellar, R.T.: Convex Analysis, Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  39. Wang, X.H.: Convergence of Newton’s method and inverse function theorem in Banach space. Math. Comput. 68, 169–186 (1999)

    Article  MATH  Google Scholar 

  40. Wang, X.H.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. Anal. 20, 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, X.B., Li, C.: Convergence of Newton’s method for systems of equations with constant rank derivatives. J. Comput. Math. 25, 705–718 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Xu, X.B., Li, C.: Convergence criterion of Newton’s method for singular systems with constant rank derivatives. J. Math. Anal. Appl. 345, 689–701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zabrejko, P.P., Nguen, D.F.: The majorant method in the theory of Newton–Kantorovich approximations and the Ptǎk error estimates. Numer. Funct. Anal. Optim. 9, 671–684 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This scientific work has been supported by the ‘Proyecto Prometeo’ of the Ministry of Higher Education Science, Technology and Innovation of the Republic of Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Argyros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Argyros, I.K., González, D. (2016). Newton’s Method for Convex Optimization. In: Amat, S., Busquier, S. (eds) Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-39228-8_3

Download citation

Publish with us

Policies and ethics