Skip to main content

Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures

  • Chapter
  • First Online:
Protein-based Engineered Nanostructures

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 940))

Abstract

In Nature, proteins perform functions that go well beyond controlled self-assembly at the nano scale. They are the principal components of diverse “biological machines” that can self-assemble into dynamic aggregates that achieve the cold conversion of chemical energy into motion to realize complex functions involved in cell division, cellular transport and cell motility. Nowadays, we have identified many of the proteins involved in these “molecular machines” and know much about their biochemistry, structure and biophysical behavior. Additionally, we have a rich toolbox of resources to engineer the basic dynamic working units into nanostructures to provide them with motion and the capacity to manipulate, transport, separate or sense single molecules to develop in vitro sensors and bioassays. This chapter summarizes some of the progress made in incorporating bio-molecular motors and dynamic self-organizing proteins into protein based functional nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland, New York

    Google Scholar 

  2. Chan V, Asada HH, Bashir R et al (2014) Utilization and control of bioactuators across multiple length scales. Lab Chip 14:653–670

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal A, Hess H (2010) Biomolecular motors at the intersection of nanotechnology and polymer science. Prog Polym Sci 35:252–277

    Article  CAS  Google Scholar 

  4. Fischer T, Agarwal A, Hess H (2009) A smart dust biosensor powered by kinesin motors. Nat Nanotechnol 4:162–166

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Wang M, Mao C (2004) An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed 43:3554–3557

    Article  CAS  Google Scholar 

  6. Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284

    Article  CAS  PubMed  Google Scholar 

  7. Forties RA, Wang MD (2014) Discovering the power of single molecules. Cell 157:4–7

    Article  CAS  PubMed  Google Scholar 

  8. Lavelle C (2014) Pack, unpack, bend, twist, pull, push: the physical side of gene expression. Curr Opin Genet Dev 25:74–84

    Article  CAS  PubMed  Google Scholar 

  9. Gennerich A (2014) Molecular motors: DNA takes control. Nat Nanotechnol 9:11–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mavroidis C, Dubey A, Yarmush ML (2004) Molecular machines. Annu Rev Biomed Eng 6:363–395

    Article  CAS  PubMed  Google Scholar 

  11. Schliwa M, Woehlke G (2003) Molecular motors. Nature 422:759–765

    Article  CAS  PubMed  Google Scholar 

  12. Phillips R, Kondev J, Theriot J (2009) Physical biology of the cell. Garland Science, Taylo & Francis Group, New York

    Google Scholar 

  13. Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95

    Article  CAS  PubMed  Google Scholar 

  14. Mattoo RH, Goloubinoff P (2014) Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol Life Sci 71:3311–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inobe T, Matouschek A (2014) Paradigms of protein degradation by the proteasome. Curr Opin Struct Biol 24:156–164

    Article  CAS  PubMed  Google Scholar 

  16. Sowaa Y, Homma M, Ishijimad A, Berry RM (2014) Hybrid-fuel bacterial flagellar motors in Escherichia coli. PNAS 111:3436–3441

    Article  CAS  Google Scholar 

  17. Wang J (2013) Nanomachines: fundamentals and applications. WILEY-VCH, Hoboken

    Book  Google Scholar 

  18. Gao W, Wang J (2014) The environmental impact of micro/nanomachines: a review. ACS Nano 8:3170–3180

    Article  CAS  PubMed  Google Scholar 

  19. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–1558

    Article  CAS  PubMed  Google Scholar 

  20. Dong C, Dinu CZ (2013) Molecular trucks and complementary tracks for bionanotechnological applications. Curr Opin Biotechnol 24:612–619

    Article  CAS  PubMed  Google Scholar 

  21. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland

    Google Scholar 

  22. Cabeen MT, Jacobs-Wagner C (2010) The bacterial cytoskeleton. Annu Rev Genet 44:365–392

    Article  CAS  PubMed  Google Scholar 

  23. Ingerson-Mahar M, Gitai Z (2012) A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiol Rev 36(1):256–266

    Article  CAS  PubMed  Google Scholar 

  24. Callaway E (2008) Bacteria’s new bones. Nature 451:124–126

    Article  CAS  PubMed  Google Scholar 

  25. Pilhofer M, Jensen GJ (2013) The bacterial cytoskeleton: more than twisted filaments. Curr Opin Cell Biol 25:125–133

    Article  CAS  PubMed  Google Scholar 

  26. Löwe J, van den Ent F, Amos LA (2004) Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct 33:177–198

    Article  PubMed  CAS  Google Scholar 

  27. Wintrebert P (1931) La rotation immédiate de l’oeuf pondu et la rotation d’activation chez Discoglossus pictus Otth. C R Soc Biol 106:439–442

    Google Scholar 

  28. Celler K, Koning RI, Koster AJ, van Wezel GP (2013) Multidimensional view of the bacterial cytoskeleton. J Bacteriol 195:1627–1636

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lin L, Thanbichler M (2013) Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton 70:409–423

    Article  CAS  PubMed  Google Scholar 

  30. Capetanaki Y, Papathanasiou S, Diokmetzidou A, Vatsellas G, Tsikitis M (2015) Desmin related disease: a matter of cell survival failure. Curr Opin Cell Biol 32:113–120

    Article  CAS  PubMed  Google Scholar 

  31. Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130

    Article  CAS  PubMed  Google Scholar 

  32. Toivola DM, Boor P, Alam C, Strnad P (2015) Keratins in health and disease. Curr Opin Cell Biol 32:73–81

    Article  CAS  PubMed  Google Scholar 

  33. Quinlan RA, Bromley EH, Pohl E (2015) A silk purse from a sow’s ear – bioinspired materials based on α-helical coiled coils. Curr Opin Cell Biol 32:131–137

    Article  CAS  PubMed  Google Scholar 

  34. Huber F, Boire A, López MP, Koenderink GH (2015) Cytoskeletal crosstalk: when three different personalities team up. Curr Opin Cell Biol 32:39–47

    Article  CAS  PubMed  Google Scholar 

  35. Snider NT, Omary MB (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15:163–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    Article  CAS  PubMed  Google Scholar 

  37. Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  CAS  PubMed  Google Scholar 

  38. Galland R, Leduc P, Guérin C, Peyrade D, Blanchoin L, Théry M (2013) Fabrication of three-dimensional electrical connections by means of directed actin self-organization. Nat Mater 12:416–421

    Article  CAS  PubMed  Google Scholar 

  39. Mitchison T, Kirschner M (1984) Microtubule assembly nucleated by isolated centrosomes. Nature 312:232–237

    Article  CAS  PubMed  Google Scholar 

  40. Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, Mahadevan L, Parker KK, Ingber DE, Weitz DA (2006) Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol 173:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li H, DeRosier D, Nicholson WV, Nogales E, Downing KH (2002) Microtubule structure at 8 a resolution. Structure 10:1317–1328

    Article  CAS  PubMed  Google Scholar 

  42. Chretien D, Metoz E, Verde E, Karsenti E, Wade RH (1992) Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J Cell Biol 117:1031–1040

    Article  CAS  PubMed  Google Scholar 

  43. Behrens S, Rahn K, Habicht W, Böhm KJ, Rösner H, Dinjus E, Unger E (2002) Nanoscale particle arrays induced by highly ordered protein assemblies. Adv Mater 14:1621–1625

    Article  CAS  Google Scholar 

  44. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  45. Dimitrov A, Quesnoit M, Moutel S, Cantaloube I, Poüs C, Perez F (2008) Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322:1353–1356

    Article  CAS  PubMed  Google Scholar 

  46. Nogales E, Wang H-W (2006) Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr Opin Struct Biol 16:221–229

    Article  CAS  PubMed  Google Scholar 

  47. Dogterom M, Kerssemakers JWJ, Romet-Lemonne G, Janson ME (2005) Force generation by dynamic microtubules. Curr Opin Cell Biol 17:67–74

    Article  CAS  PubMed  Google Scholar 

  48. Westermann S, Wang H-W, Avila-Sakar A, Drubin DG, Nogales E, Barnes G (2006) The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440:565–569

    Article  CAS  PubMed  Google Scholar 

  49. Davis LJ, Odde DJ, Block SM, Gross SP (2002) The importance of lattice defects in katanin-mediated microtubule severing in vitro. Biophys J 82:2916–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bouchard AM, Warrender CE, Osbourn GC (2006) Harnessing microtubule dynamic instability for nanostructure assembly. Phys Rev E 74:041902

    Article  CAS  Google Scholar 

  51. Tucker R, Katira P, Hess H (2008) Herding nanotransporters: localized activation via release and sequestration of control molecules. Nano Lett 8:221–226

    Article  CAS  PubMed  Google Scholar 

  52. Spoerke ED, Bachand GD, Liu J, Sasaki D, Bunker BC (2008) Directing the polar organization of microtubules. Langmuir 24:7039–7043

    Article  CAS  PubMed  Google Scholar 

  53. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  CAS  PubMed  Google Scholar 

  54. Margolin W (2009) Sculpting the bacterial cell. Curr Biol 19:R812–R822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164

    Article  CAS  PubMed  Google Scholar 

  56. Jones LJF, Carballido-López R, Errington J (2001) Control of cell shape in bacteria. Cell 104:913–922

    Article  CAS  PubMed  Google Scholar 

  57. Nora Ausmees JRK, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115:705–713

    Article  PubMed  Google Scholar 

  58. Mingorance J, Rivas G, Vélez M, Gómez-Puertas P, Vicente M (2010) Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol 18:348–356

    Article  CAS  PubMed  Google Scholar 

  59. Mateos-Gil P, Paez A, Hörger I, Rivas G, Vicente M, Tarazona P, Vélez M (2012) Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ. Proc Natl Acad Sci 109:8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ostrov N, Gazit E (2010) Genetic engineering of biomolecular scaffolds for the fabrication of organic and metallic nanowires. Angew Chem Int Ed 49:3018–3021

    Article  CAS  Google Scholar 

  61. Mateos-Gil P, Márquez I, López-Navajas P, Jiménez M, Vicente M, Mingorance J, Rivas G, Vélez M (2012) FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks. Biochim Biophys Acta 1818:806–813

    Article  CAS  PubMed  Google Scholar 

  62. Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16:38–46

    Article  CAS  PubMed  Google Scholar 

  63. Case RB, Rice S, Hart CL, Ly B, Vale RD (2000) Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr Biol 10:157–160

    Article  CAS  PubMed  Google Scholar 

  64. Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer JA (2002) Identification of an organelle receptor for myosin-Va. Nat Cell Biol 4:271–278

    Article  CAS  PubMed  Google Scholar 

  65. de Lanerolle P (2012) Nuclear actin and myosins at a glance. J Cell Sci 125:4945–4949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  CAS  PubMed  Google Scholar 

  67. Astumian RD (1997) Thermodynamics and kinetics of a brownian motor. Science 276:917–922

    Article  CAS  PubMed  Google Scholar 

  68. Block SM (2007) Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys J 92:2986–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Spudich JA (2001) The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol 2:387–392

    Article  CAS  PubMed  Google Scholar 

  70. Tyska MJ, Mooseker MS (2003) Myosin-V motility: these levers were made for walking. Trends Cell Biol 13:447–451

    Article  CAS  PubMed  Google Scholar 

  71. Pierobon P, Achouri S, Courty S, Dunn AR, Spudich JA, Dahan M, Cappello G (2009) Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys J 96:4268–4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400:590–593

    Article  CAS  PubMed  Google Scholar 

  73. Schindler TD, Chen L, Lebel P, Nakamura M, Bryant Z (2014) Engineering myosins for long-range transport on actin filaments. Nat Nanotechnol 9:33–38

    Article  CAS  PubMed  Google Scholar 

  74. Nakamura M, Chen L, Howes SC, Schindler TD, Nogales E, Bryant Z (2014) Remote control of myosin and kinesin motors using light-activated gearshifting. Nat Nanotechnol 9:693–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Frederick Gittes BM, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934

    Article  Google Scholar 

  76. Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301:50–59

    Article  CAS  PubMed  Google Scholar 

  77. Gunawardena S, Goldstein LSB (2004) Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol 58:258–271

    Article  CAS  PubMed  Google Scholar 

  78. Sharp DJ, Rogers GC, Scholey JM (2000) Microtubule motors in mitosis. Nature 407:41–47

    Article  CAS  PubMed  Google Scholar 

  79. Insinna C, Besharse JC (2008) Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn 237:1982–1992

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cl A (2005) Kinesin: world’s tiniest biped. Curr Opin Cell Biol 17:89–97

    Article  CAS  Google Scholar 

  81. Coy DL, Wagenbach M, Howard J (1999) Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J Biol Chem 274:3667–3671

    Article  CAS  PubMed  Google Scholar 

  82. Hancock WO, Howard J (1999) Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc Natl Acad Sci 96:13147–13152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Coy DL, Hancock WO, Wagenbach M, Howard J (1999) Kinesin/’s tail domain is an inhibitory regulator of the motor domain. Nat Cell Biol 1:288–292

    Article  CAS  PubMed  Google Scholar 

  84. Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158

    Article  CAS  PubMed  Google Scholar 

  85. Gazit E (2007) Use of biomolecular templates for the fabrication of metal nanowires. FEBS J 274:317–322

    Article  CAS  PubMed  Google Scholar 

  86. Patolsky F, Weizmann Y, Willner I (2004) Actin-based metallic nanowires as bio-nanotransporters. Nat Mater 3:692–695

    Article  CAS  PubMed  Google Scholar 

  87. Behrens S, Wu J, Habicht W, Unger E (2004) Silver nanoparticle and nanowire formation by microtubule templates. Chem Mater 16:3085–3090

    Article  CAS  Google Scholar 

  88. Boal AK, Headley TJ, Tissot RG, Bunker BC (2004) Microtubule-templated biomimetic mineralization of lepidocrocite. Adv Funct Mater 14:19–24

    Article  CAS  Google Scholar 

  89. Dinu CZ, Bale SS, Zhu G, Dordick JS (2009) Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. Small 5:310–315

    Article  CAS  PubMed  Google Scholar 

  90. Kim T, Cheng L-J, Kao M-T, Hasselbrink EF, Guo L, Meyhofer E (2009) Biomolecular motor-driven molecular sorter. Lab Chip 9:1282–1285

    Article  CAS  PubMed  Google Scholar 

  91. Turner D, Chang C, Fang K, Cuomo P, Murphy D (1996) Kinesin movement on glutaraldehyde-fixed microtubules. Anal Biochem 242:20–25

    Article  CAS  PubMed  Google Scholar 

  92. Turner DC, Chang C, Fang K, Brandow SL, Murphy DB (1995) Selective adhesion of functional microtubules to patterned silane surfaces. Biophys J 69:2782–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Limberis L, Magda JJ, Stewart RJ (2001) Polarized alignment and surface immobilization of microtubules for kinesin-powered nanodevices. Nano Lett 1:277–280

    Article  CAS  Google Scholar 

  94. Doot RK, Hess H, Vogel V (2007) Engineered networks of oriented microtubule filaments for directed cargo transport. Soft Matter 3:349–356

    Article  CAS  Google Scholar 

  95. Agayan RR, Tucker R, Nitta T, Ruhnow F, Walter WJ, Diez S, Hess H (2013) Optimization of isopolar microtubule arrays. Langmuir 29:2265–2272

    Article  CAS  PubMed  Google Scholar 

  96. Katira P, Hess H (2010) Two-stage capture employing active transport enables sensitive and fast biosensors. Nano Lett 10:567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hess H (2011) Engineering applications of biomolecular motors. Annu Rev Biomed Eng 13:429–450

    Article  CAS  PubMed  Google Scholar 

  98. Lard M, ten Siethoff L, Generosi J, Månsson A, Linke H (2014) Molecular motor transport through hollow nanowires. Nano Lett 14:3041–3046

    Article  CAS  PubMed  Google Scholar 

  99. Fujimoto K, Kitamura M, Yokokawa M, Kanno I, Kotera H, Yokokawa R (2013) Colocalization of quantum dots by reactive molecules carried by motor proteins on polarized microtubule arrays. ACS Nano 7:447–455

    Article  CAS  PubMed  Google Scholar 

  100. Suzuki H, Yamada A, Oiwa K, Nakayama H, Mashiko S (1997) Control of actin moving trajectory by patterned poly(methylmethacrylate) tracks. Biophys J 72:1997–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nicolau DV, Suzuki H, Mashiko S, Taguchi T, Yoshikawa S (1999) Actin motion on microlithographically functionalized myosin surfaces and tracks. Biophys J 77:1126–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sundberg M, Bunk R, Albet-Torres N, Kvennefors A, Persson F, Montelius L, Nicholls IA, Ghatnekar-Nilsson S, Omling P, Tågerud S, Månsson A (2006) Actin filament guidance on a chip: toward high-throughput assays and lab-on-a-chip applications. Langmuir 22:7286–7295

    Article  CAS  PubMed  Google Scholar 

  103. Clemmens J, Hess H, Lipscomb R, Hanein Y, Böhringer KF, Matzke CM, Bachand GD, Bunker BC, Vogel V (2003) Mechanisms of microtubule guiding on microfabricated kinesin-coated surfaces: chemical and topographic surface patterns. Langmuir 19:10967–10974

    Article  CAS  Google Scholar 

  104. Ishigure Y, Nitta T (2014) Understanding the guiding of kinesin/microtubule-based microtransporters in microfabricated tracks. Langmuir 30:12089–12096

    Article  CAS  PubMed  Google Scholar 

  105. Riveline D, Ott A, Jülicher F, Winkelmann DA, Cardoso O, Lacapère J-J, Magnúsdóttir S, Viovy JL, Gorre-Talini L, Prost J (1998) Acting on actin: the electric motility assay. Eur Biophys J 27:403–408

    Article  CAS  PubMed  Google Scholar 

  106. van den Heuvel MGL, de Graaff MP, Dekker C (2006) Molecular sorting by electrical steering of microtubules in kinesin-coated channels. Science 312:910–914

    Article  PubMed  CAS  Google Scholar 

  107. Hutchins BM, Platt M, Hancock WO, Williams ME (2007) Directing transport of CoFe2O4-functionalized microtubules with magnetic fields. Small 3:126–131

    Article  CAS  PubMed  Google Scholar 

  108. Taesung K, Ming-Tse K, Edgar M, Ernest FH (2007) Biomolecular motor-driven microtubule translocation in the presence of shear flow: analysis of redirection behaviours. Nanotechnology 18:025101

    Article  CAS  Google Scholar 

  109. Kumar KRS, Kamei T, Fukaminato T, Tamaoki N (2014) Complete ON/OFF photoswitching of the motility of a nanobiomolecular machine. ACS Nano 8:4157–4165

    Article  CAS  PubMed  Google Scholar 

  110. Schroeder V, Korten T, Linke H, Diez S, Maximov I (2013) Dynamic guiding of motor-driven microtubules on electrically heated, smart polymer tracks. Nano Lett 13:3434–3438

    Article  CAS  PubMed  Google Scholar 

  111. Hiyama S, Moritani Y, Gojo R, Takeuchi S, Sutoh K (2010) Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab Chip 10:2741–2748

    Article  CAS  PubMed  Google Scholar 

  112. Muthukrishnan G, Hutchins BM, Williams ME, Hancock WO (2006) Transport of semiconductor nanocrystals by kinesin molecular motors. Small 2:626–630

    Article  CAS  PubMed  Google Scholar 

  113. Yokokawa R, Tarhan MC, Kon T, Fujita H (2008) Simultaneous and bidirectional transport of kinesin-coated microspheres and dynein-coated microspheres on polarity-oriented microtubules. Biotechnol Bioeng 101:1–8

    Article  CAS  PubMed  Google Scholar 

  114. Bottier C, Fattaccioli J, Tarhan MC, Yokokawa R, Morin FO, Kim B, Collard D, Fujita H (2009) Active transport of oil droplets along oriented microtubules by kinesin molecular motors. Lab Chip 9:1694–1700

    Article  CAS  PubMed  Google Scholar 

  115. Ryuji Yokokawa ST, Nishiura M, Ohkura R, Kon T, Sutoh K, Fujita H (2004) Hybrid nano transfer system by biomolecular linear motors. J Microelectromech Syst 13:612–619

    Article  CAS  Google Scholar 

  116. Tarhan MC, Yokokawa R, Bottier C, Collard D, Fujita H (2010) A nano-needle/microtubule composite gliding on a kinesin-coated surface for target molecule transport. Lab Chip 10:86–91

    Article  CAS  PubMed  Google Scholar 

  117. Boal AK, Bachand GD, Rivera SB, Bunker BC (2006) Interactions between cargo-carrying biomolecular shuttles. Nanotechnology 17:349

    Article  CAS  Google Scholar 

  118. Brunner C, Wahnes C, Vogel V (2007) Cargo pick-up from engineered loading stations by kinesin driven molecular shuttles. Lab Chip 7:1263–1271

    Article  CAS  PubMed  Google Scholar 

  119. Bachand GD, Rivera SB, Boal AK, Gaudioso J, Liu J, Bunker BC (2004) Assembly and transport of nanocrystal CdSe quantum Dot nanocomposites using microtubules and kinesin motor proteins. Nano Lett 4:817–821

    Article  CAS  Google Scholar 

  120. Diez S, Reuther C, Dinu C, Seidel R, Mertig M, Pompe W, Howard J (2003) Stretching and transporting DNA molecules using motor proteins. Nano Lett 3:1251–1254

    Article  CAS  Google Scholar 

  121. Dinu CZ, Opitz J, Pompe W, Howard J, Mertig M, Diez S (2006) Parallel manipulation of bifunctional DNA molecules on structured surfaces using kinesin-driven microtubules. Small 2:1090–1098

    Article  CAS  PubMed  Google Scholar 

  122. Bachand GD, Rivera SB, Carroll-Portillo A, Hess H, Bachand M (2006) Active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay. Small 2:381–385

    Article  CAS  PubMed  Google Scholar 

  123. Martin BD, Soto CM, Blum AS, Sapsford KE, Whitley JL, Johnson JE, Chatterji A, Ratna BR (2006) An engineered virus as a bright fluorescent tag and scaffold for cargo proteins—capture and transport by gliding microtubules. J Nanosci Nanotechnol 6:2451–2460

    Article  CAS  PubMed  Google Scholar 

  124. Lin C-T, Kao M-T, Kurabayashi K, Meyhofer E (2008) Self-contained, biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip. Nano Lett 8:1041–1046

    Article  CAS  PubMed  Google Scholar 

  125. Lard M, ten Siethoff L, Kumar S, Persson M, te Kronnie G, Linke H, Månsson A (2013) Ultrafast molecular motor driven nanoseparation and biosensing. Biosens Bioelectron 48:145–152

    Article  CAS  PubMed  Google Scholar 

  126. Bachand GD, Hess H, Ratna B, Satir P, Vogel V (2009) “Smart dust” biosensors powered by biomolecular motors. Lab Chip 9:1661–1666

    Article  CAS  PubMed  Google Scholar 

  127. Schmidt C, Vogel V (2010) Molecular shuttles powered by motor proteins: loading and unloading stations for nanocargo integrated into one device. Lab Chip 10:2195–2198

    Article  CAS  PubMed  Google Scholar 

  128. Hess H (2006) Self-assembly driven by molecular motors. Soft Matter 2:669–677

    Article  CAS  Google Scholar 

  129. Aoyama S, Shimoike M, Hiratsuka Y (2013) Self-organized optical device driven by motor proteins. Proc Natl Acad Sci 110:16408–16413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hess H, Clemmens J, Brunner C, Doot R, Luna S, Ernst K-H, Vogel V (2005) Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett 5:629–633

    Article  CAS  PubMed  Google Scholar 

  131. Liu H, Spoerke ED, Bachand M, Koch SJ, Bunker BC, Bachand GD (2008) Biomolecular motor-powered self-assembly of dissipative nanocomposite rings. Adv Mater 20:4476–4481

    Article  CAS  Google Scholar 

  132. Ryuzo K, Akira K, Yoshihito O, Jian Ping G (2010) Microtubule bundle formation driven by ATP: the effect of concentrations of kinesin, streptavidin and microtubules. Nanotechnology 21:145603

    Article  Google Scholar 

  133. Lam AT, Curschellas C, Krovvidi D, Hess H (2014) Controlling self-assembly of microtubule spools via kinesin motor density. Soft Matter 10:8731–8736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Surrey T, Nédélec F, Leibler S, Karsenti E (2001) Physical properties determining self-organization of motors and microtubules. Science 292:1167–1171

    Article  CAS  PubMed  Google Scholar 

  135. He Y, Liu DR (2010) Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 5:778–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Goel A, Vogel V (2008) Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat Nanotechnol 3:465–475

    Article  CAS  PubMed  Google Scholar 

  137. Zheng Z, Daniel WL, Giam LR, Huo F, Senesi AJ, Zheng G, Mirkin CA (2009) Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge. Angewandte Chemie (International ed. in English) 48:7626–7629

    Google Scholar 

  138. Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322

    Article  CAS  PubMed  Google Scholar 

  140. Clemmens J, Hess H, Doot R, Matzke CM, Bachand GD, Vogel V (2004) Motor-protein “roundabouts”: microtubules moving on kinesin-coated tracks through engineered networks. Lab Chip 4:83–86

    Article  CAS  PubMed  Google Scholar 

  141. Hess H, Howard J, Vogel V (2002) A piconewton forcemeter assembled from microtubules and kinesins. Nano Lett 2:1113–1115

    Article  CAS  Google Scholar 

  142. Coti KK, Belowich ME, Liong M, Ambrogio MW, Lau YA, Khatib HA, Zink JI, Khashab NM, Stoddart JF (2009) Mechanised nanoparticles for drug delivery. Nanoscale 1:16–39

    Article  CAS  PubMed  Google Scholar 

  143. Ye X, Hemida M, Zhang HM, Hanson P, Ye Q, Yang D (2012) Current advances in Phi29 pRNA biology and its application in drug delivery. Wiley Interdiscip Rev RNA 3:469–481

    Article  CAS  PubMed  Google Scholar 

  144. Lipowsky R, Chai Y, Klumpp S, Liepelt S, Müller MJI (2006) Molecular motor traffic: from biological nanomachines to macroscopic transport. Physica A Stat Mech Appl 372:34–51

    Article  CAS  Google Scholar 

  145. Jülicher F, Ajdari A, Prost J (1997) Modeling molecular motors. Rev Mod Phys 69:1269–1282

    Article  Google Scholar 

  146. Leduc C, Ruhnow F, Howard J, Diez S (2007) Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors. Proc Natl Acad Sci 104:10847–10852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Konrad JB, Roland S, Peter M, Eberhard U (2001) Motor protein-driven unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays. Nanotechnology 12:238

    Article  Google Scholar 

  148. Haimo LT, Thaler CD (1994) Regulation of organelle transport: lessons from color change in fish. BioEssays 16:727–733

    Article  Google Scholar 

  149. van Delden RA, Koumura N, Harada N, Feringa BL (2002) Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor. Proc Natl Acad Sci 99:4945–4949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  151. Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA (2009) An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci 106:15192–15197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li Q, Fuks G, Moulin E, Maaloum M, Rawiso M, Kulic I, Foy JT, Giuseppone N (2015) Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat Nanotechnol 10:161–165

    Article  PubMed  CAS  Google Scholar 

  153. Sano K-I, Kawamura R, Tominaga T, Oda N, Ijiro K, Osada Y (2011) Self-repairing filamentous actin hydrogel with hierarchical structure. Biomacromolecules 12:4173–4177

    Article  CAS  PubMed  Google Scholar 

  154. Yeghiazarian L, Mahajan S, Montemagno C, Cohen C, Wiesner U (2005) Directed motion and cargo transport through propagation of polymer-gel volume phase transitions. Adv Mater 17:1869–1873

    Article  CAS  Google Scholar 

  155. Yoshida R (2010) Self-oscillating gels driven by the belousov–zhabotinsky reaction as novel smart materials. Adv Mater 22:3463–3483

    Article  CAS  PubMed  Google Scholar 

  156. Howse JR, Topham P, Crook CJ, Gleeson AJ, Bras W, Jones RAL, Ryan AJ (2006) Reciprocating power generation in a chemically driven synthetic muscle. Nano Lett 6:73–77

    Article  CAS  PubMed  Google Scholar 

  157. Keber FC, Loiseau E, Sanchez T, DeCamp SJ, Giomi L, Bowick MJ, Marchetti MC, Dogic Z, Bausch AR (2014) Topology and dynamics of active nematic vesicles. Science 345:1135–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisela Vélez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vélez, M. (2016). Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures. In: Cortajarena, A., Grove, T. (eds) Protein-based Engineered Nanostructures. Advances in Experimental Medicine and Biology, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-319-39196-0_6

Download citation

Publish with us

Policies and ethics