Skip to main content

Wound Healing and Skin Regeneration

  • Chapter
  • First Online:
Bionanomaterials for Skin Regeneration

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

Abstract

Depending on the healing time, skin wounds can be divided into two classes: acute and chronic wounds [1, 2]. Acute wounds are characterized by broken or punctured skin layers and usually heal over a short time frame. Acute wounds can be further divided into different types based upon their causes, for example: surgical incision, thermal, abrasion, laceration, gunshot wounds, etc. In addition to epidermal cells, acute wounds may involve a part or the full thickness of the dermal layer. Chronic wounds, which have become an epidemic, take a long time to heal as they are mostly associated with diseases like diabetes and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C Mater Biol Appl 48:651–662

    Article  CAS  PubMed  Google Scholar 

  2. http://www.woundcarecenters.org/articles/wound-types/. Accessed 22 Mar 2016

  3. Martin P (1997) Wound healing - aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  4. Guo S, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clark RAF (1988) Overview and general considerations of wound repair. In: Clark RAF, Henson PM (eds) The molecular and cellular biology of wound repair. Springer, New York, pp 3–33

    Chapter  Google Scholar 

  6. Fife CE, Carter MJ, Walker D, Thomson B (2012) Wound care outcomes and associated cost among patients treated in US Outpatient Wound Centers: data from the US Wound Registry. Wounds 24:10–17

    PubMed  Google Scholar 

  7. Woo K, Ayello EA, Sibbald RG (2007) The edge effect: current therapeutic options to advance the wound edge. Adv Skin Wound Care 20:99–117

    Article  PubMed  Google Scholar 

  8. Sibbald RG, Woo KY (2008) The biology of chronic foot ulcers in persons with diabetes. Diabetes Metab Res Rev 24(Suppl 1):25–30

    Article  Google Scholar 

  9. Margolis DJ, Hoffstad O, Nafash J, Leonard CE, Freeman CP, Hennessy S, Wiebe DJ (2011) Location, location, location: geographic clustering of lower-extremity amputation among medicare beneficiaries with diabetes. Diabetes Care 34:2363–2367

    Article  PubMed  PubMed Central  Google Scholar 

  10. Snyder RJ, Hanft JR (2009) Diabetic foot ulcers-effect on quality of life, costs, and mortality and the role of standard wound care and advanced-care therapies in healing: review. Ostomy Wound Manage 55:28–38

    PubMed  Google Scholar 

  11. Bowler PG (2002) Wound pathophysiology, infection and therapeutic opinion. Ann Med 34:419–427

    Article  CAS  PubMed  Google Scholar 

  12. Gardner SE, Frantz RA (2008) Wound bioburden and infection related complication in diabetic foot ulcers. Biol Res Nurs 10:44–53

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lipsky BA (2008) New developments in diagnosing and treating diabetic foot infections. Diabetes Metab Res Rev 24(Suppl 1):S66–S71

    Article  PubMed  Google Scholar 

  14. Steed DL, Attinger C, Colaizzi T et al (2006) Guidelines for treatment of diabetic ulcers. Wound Repair Regen 14:680–692

    Article  PubMed  Google Scholar 

  15. Daley BJ (2013) http://emedicine.medscape.com/article/194018-treatment, Chief Editor: Panthaki Z J, updated March 11, 2016

  16. Mechanick JI (2004) Practical aspects of nutritional support for wound healing patients. Am J Surg 188(1A Suppl):52–56

    Article  PubMed  Google Scholar 

  17. Greer N, Forman N, Dorrian J, Fitzgerald P, Macdonald R, Rutks I, Wilt T (2012) Advanced wound care therapies for non-healing diabetic, venous and arterial ulcers: a systematic review. VA-ESP Project #09-009

    Google Scholar 

  18. Phillips TJ, Kehinde O, Green H, Gilchrest BA (1989) Treatment of skin ulcers with cultured epidermal allografts. J Am Acad Dermatol 21:191–199

    Article  CAS  PubMed  Google Scholar 

  19. Harris PA, Leigh IM, Navsaria HA (1998) Pre-confluent keratinocyte grafting: the future for cultured skin replacements? Burns 24:591–593

    Article  CAS  PubMed  Google Scholar 

  20. Wainwright DJ (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21:243–248

    Article  CAS  PubMed  Google Scholar 

  21. Stanulis-Praeger BM, Gilchrest BA (1986) Growth factor responsiveness declines during adulthood for human skin-derived cells. Mech Ageing Dev 34:185–198

    Article  Google Scholar 

  22. Colwell AS, Faudoa R, Krummel TM, Longaker MT, Lorenz HP (2007) Transforming growth factor-beta, Smad, and collagen expression patterns in fetal and adult keratinocytes. Plast Reconstr Surg 119:852–857

    Article  CAS  PubMed  Google Scholar 

  23. Ferguson MW, O’Kane S (2004) Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 359:839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Connor NE (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1:75–78

    Article  Google Scholar 

  25. Hefton JM, Caldwell D, Biozes DG, Balin AK, Carter DM (1986) Grafting of skin ulcers with cultured autologous epidermal cells. J Am Acad Dermatol 14:399–405

    Article  CAS  PubMed  Google Scholar 

  26. Wood F, Martin L, Lewis D, Rawlins J, McWilliams T, Burrows S, Rea S (2012) A prospective randomised clinical pilot study to compare the effectiveness of Biobrane(R) synthetic wound dressing, with or without autologous cell suspension, to the local standard treatment regimen in paediatric scald injuries. Burns 38:830–839

    Article  CAS  PubMed  Google Scholar 

  27. De Luca M, Albanese E, Bondanza S, Megna M, Ugozzoli L, Molina F, Cancedda R, Santi PL, Bormioli M, Stella M (1989) Multicentre experience in the treatment of burns with autologous and allogenic cultured epithelium, fresh or preserved in a frozen state. Burns 15:303–309

    Article  PubMed  Google Scholar 

  28. Lam PK, Chan ES, To EW, Lau CH, Yen SC, King WW (1999) Development and evaluation of a new composite Laserskin graft. J Trauma 47:918–922

    Article  CAS  PubMed  Google Scholar 

  29. Nanchahal J, Ward CM (1992) New grafts for old? A review of alternatives to autologous skin. Br J Plast Surg 45:354–363

    Article  CAS  PubMed  Google Scholar 

  30. Leigh IM, Purkis PE (1986) Culture grafted leg ulcers. Clin Exp Dermatol 11:650–652

    Article  CAS  PubMed  Google Scholar 

  31. Malmquist JP, Clemens SC, Oien HJ, Wilson SL (2008) Hemostasis of oral surgery wounds with the HemCon Dental Dressing. J Oral Maxillofac Surg 66:1177–1183

    Article  PubMed  Google Scholar 

  32. Kirichenko AK, Bolshakov IN, Ali-Riza AE, Vlasov AA (2013) Morphological study of burn wound healing with the use of collagen-chitosan wound dressing. Bull Exp Biol Med 154:692–696

    Article  CAS  PubMed  Google Scholar 

  33. Chen WY, Abatangelo G (1999) Functions of hyaluronan in wound repair. Wound Repair Regen 7:79–89

    Article  CAS  PubMed  Google Scholar 

  34. Dreifke M, Ebraheim NA, Jayasuriya AC (2013) Investigation of potential injectable polymeric biomaterials for bone regeneration. J Biomed Mater Res A 101:2436–2447

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ehrenreich M, Ruszczak Z (2006) Tissue-engineered temporary wound coverings. Important options for the clinician. Acta Dermatovenerol Alp Panonica Adriat 15:5–13

    Google Scholar 

  36. Bradley T, Brown RE, Kucan JO, Smoot EC III, Hussmann J (1995) Toxic epidermal necrolysis: a review and report of the successful use of Biobrane for early wound coverage. Ann Plast Surg 35:124–132

    Article  CAS  PubMed  Google Scholar 

  37. Egan WC, Clark WR (1988) The toxic shock syndrome in a burn victim. Burns Incl Therm Inj 14:135–138

    Article  CAS  PubMed  Google Scholar 

  38. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  39. Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine 6:1551–1573

    Google Scholar 

  40. Goldman R (2004) Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care 17:24–35

    Article  PubMed  Google Scholar 

  41. Steed DL (1995) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J Vasc Surg 21:71–78 [discussion79–81]

    Article  CAS  PubMed  Google Scholar 

  42. Update of Safety Review: Follow-up to the March 27, 2008, Communication about the Ongoing Safety Review of Regranex (becaplermin).http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm072148.htm 2010. Accessed Jan 1 2016.

  43. Fernandez-Montequin JI, Betancourt BY, Leyva-Gonzalez G, Mola EL, Galan-Naranjo K, Ramirez-Navas M (2009) Intralesional administration of epidermal growth factor-based formulation (Heberprot-P) in chronic diabetic foot ulcer: treatment up to complete wound closure. Int Wound J 6:67–72

    Article  PubMed  Google Scholar 

  44. Tiaka EK, Papanas N, Manolakis AC, Georgiadis GS (2012) Epidermal growth factor in the treatment of diabetic foot ulcers: an update. Perspect Vasc Surg Endovasc Ther 24:37–44

    Article  PubMed  Google Scholar 

  45. Tuyet HL, Nguyen Quynh TT, Vo Hoang Minh H, Thi Bich DN, Do Dinh T, Le Tan D (2009) The efficacy and safety of epidermal growth factor in treatment of diabetic foot ulcers: the preliminary results. Int Wound J 6:159–166

    Article  PubMed  Google Scholar 

  46. Ohura T, Nakajo T, Moriguchi T, Oka H, Tachi M, Ohura N Jr (2011) Clinical efficacy of basic fibroblast growth factor on pressure ulcers: case–control pairing study using a new evaluation method. Wound Repair Regen 19:542–551

    Article  PubMed  Google Scholar 

  47. Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M (2014) Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 22(5):569–578

    Article  PubMed  PubMed Central  Google Scholar 

  48. Okabe K, Hayashi R, Aramaki-Hattori N, Sakamoto Y, Kishi K (2013) Wound treatment using growth factors. Mod Plast Surg 3:108–112

    Article  Google Scholar 

  49. Kumar V, Fausto N, Fausto N, Robbins SL, Abbas AK, Cotran R (2010) Robbins and Cotran pathologic basis of disease, 8th edn. Elsevier, Philadelphia, Chapter 3

    Google Scholar 

  50. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourge J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  52. Wu Y, Huang S, Enhe J, Ma K, Yang S, Sun T, Fu X (2014) Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice. Int Wound J 6:701–710

    Article  Google Scholar 

  53. Huang SP, Hsu CC, Chang SC, Wang CH, Deng SC, Dai NT, Chen TM, Chan JY, Chen SG, Huang SM (2012) Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg 69:656–662

    Article  CAS  PubMed  Google Scholar 

  54. Ribeiro J, Pereira T, Amorim I, Caseiro AR, Lopes MA, Lima J, Gartner A, Santos JD, Bártolo PJ, Rodrigues JM, Mauricio AC, Luís AL (2014) Cell therapy with human MSCs isolated from the umbilical cord Wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds. Int J Med Sci 11:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang R, Zheng Y, Li L, Liu S, Burrows M, Wei Z, Nace A, Herlyn M, Cui R, Guo W, Cotsarelis G, Xu X (2014) Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nat Commun 5:5807. doi:10.1038/ncomms6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Benjamin McIntire J, Pine H (2014) Wound healing-scar minimization. In: Quninn FB (ed) Didactic Day Presentation, pp 1–7

    Google Scholar 

  57. Blais M, Parenteau-Bareil R, Cadau S, Berthod F (2013) Concise review: tissue-engineered skin and nerve regeneration in burn treatment. Stem Cells Transl Med 2:545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leonida, M.D., Kumar, I. (2016). Wound Healing and Skin Regeneration. In: Bionanomaterials for Skin Regeneration. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39168-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39168-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39166-3

  • Online ISBN: 978-3-319-39168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics