Skip to main content

Manipulation of Carotenoid Content in Plants to Improve Human Health

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 79))

Abstract

Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alos E, Cercos M, Rodrigo MJ, Zacarias L, Talon M (2006) Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. J Agric Food Chem 54:4888–4895

    Article  CAS  PubMed  Google Scholar 

  • Alos E, Roca M, Iglesias DJ, Mínguez-Mosquera MI, Damasceno CM, Thannhauser TW, Rose JK, Talon M, Cercos M (2008) An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Plant Physiol 47:1300–1315

    Article  CAS  Google Scholar 

  • Alquezar B, Rodrigo MJ, Zacarías L (2008) Carotenoid biosynthesis and their regulation in citrus fruits. Tree Forest Sci Biotech 2:23–35

    Google Scholar 

  • Altinciceck B, Kovacs JL, Gerardo NM (2012) Horizontally transferred fungal carotenoid genes in two-spotted spider mite Tetranychus urticae. Biol Lett 8:253–257

    Article  Google Scholar 

  • Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer H (2011) Biofotification: a new tol to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S41

    Article  PubMed  Google Scholar 

  • Bouvier F, Hugueney P, D’Harlingue A, Kuntz M, Camara B (1994) Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J 6:45–54

    Article  CAS  PubMed  Google Scholar 

  • Brand A, Borovsky Y, Meir S, Rogachev I, Aharoni A, Paran I (2012) A major QTL for pigment content in pepper fruit is associated with variation in plastid compartment size. Planta 235:579–588

    Article  CAS  PubMed  Google Scholar 

  • Brown CR, Culley D, Yang C, Durst R, Wrolstad R (2005) Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines. J Amer Soc Hort Sci 130:174–180

    CAS  Google Scholar 

  • Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Campbell R, Morris WL, Mortimer CL, Misawa N, Ducreux LJM, Morris JA, Hedley PE, Fraser PD, Taylor MA (2015) Optimizing ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment. Plant Sc 234:27–37

    Article  CAS  Google Scholar 

  • Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci 49:313–326

    Article  CAS  Google Scholar 

  • Ceballos H, Hershey C, Becerra-Lopez-Lavalle LA (2012) New approaches to cassava breeding. Plant Breed Rev 36:427–504

    Google Scholar 

  • Ceballos H, Morante N, Sanchez T, Ortiz D, Aragon I, Chavez AL, Pizarro M, Calle F, Dufour D (2013) Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Sci 53:2342–2351

    Article  CAS  Google Scholar 

  • Chander S, Guo YQ, Yang XH, Zhang J, Lu XQ, Yan JB, Song TM, Rocheford TR, Li JS (2007) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet 116:223–323

    Article  PubMed  CAS  Google Scholar 

  • Cong L, Wang C, Chen L, Liu H, Yang G, He G (2009) Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J Agric Food Chem 57:8652–8660

    Article  CAS  PubMed  Google Scholar 

  • D’Ambrosio C, Giorio G, MarinoI MA, Petrozza A, Salfi L, Stigliani AL, Cellini F (2004) Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Sci 166:207–214

    Article  CAS  Google Scholar 

  • D’Ambrosio C, Stigliani AL, Giorio G (2011) Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants. Transgenic Res 20:47–60

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Rai M, Parkhi V et al (2006) Improved “Golden” rice and post-transgeneration enhancement of metabolic target products of carotenoids (b-carotene) in transgenic elite cultivars (IR64 and BR29). Curr Sci 91:935–939

    CAS  Google Scholar 

  • Datta SK, Datta K, Parkhi V et al (2007) Golden rice: introgression, breeding, and field evaluation. Euphytica 154:271–278

    Article  Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  CAS  PubMed  Google Scholar 

  • de Saint GA, Bonhomme S, Boyer FD, Rameau C (2013) Novel insights into strigolactone distribution and signalling. Curr Opin Plant Biol 16:583–589

    Article  CAS  Google Scholar 

  • Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G (2012) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 519:30–34

    Article  Google Scholar 

  • Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G (2006) Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007a) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2, e350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G (2007b) Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol 7:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 409:81–89

    Google Scholar 

  • Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson MS, Pfeiffer W (2012) Nutritionally enhanced staple food crops. Plant Breeding Rev 36:169–291

    Google Scholar 

  • Enfissi EM, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27

    Article  CAS  PubMed  Google Scholar 

  • Erdman JW Jr, Fordyce EJ (1989) Soy products and the human diet. Am J Clin Nutr 49:725–737

    PubMed  Google Scholar 

  • Etminan M, Takkouche B, Caamaño-Isorna F (2004) The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev 13:340–345

    CAS  PubMed  Google Scholar 

  • Failla ML, Chitchumroonchokchai C, Siritunga D, De Moura FF, Fregene M, Manary MJ, Sayre RT (2012) Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root. J Agric Food Chem 60:3861–3866

    Article  CAS  PubMed  Google Scholar 

  • Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G (2013) Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol 163:986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faostat (2008) Statistics on Agricultural Production and Trade. Food and Agricultural Organization of the United Nations. www.faostat.com

  • Farre G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu C, Christou P (2010) Travel advice on the road to carotenoids in plants. Plant Sci 179:28–48

    Article  CAS  Google Scholar 

  • Farre G, Bai C, Twyman RM, Capell T, Christou P, Zhu C (2011) Nutritious crops producing multiple carotenoids-a metabolic balancing act. Trend Plant Sci 16:532–540

    Article  CAS  Google Scholar 

  • Fassett RG, Coombes JS (2012) Astaxanthin in cardiovascular health and disease. Molecules 17:2030–2048

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol 105:405–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser PD, Römer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci U S A 99:1092–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser PD, Enfissi EM, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–31211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser PD, Enfissi EM, Bramley PM (2009) Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch Biochem Biophys 483:196–204

    Article  CAS  PubMed  Google Scholar 

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  CAS  PubMed  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701

    Article  CAS  Google Scholar 

  • Fu Z, Chai Y, Zhou Y, Yang X, Warburton ML, Xu S, Cai Y, Zhang D, Li J, Yan J (2013) Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theor Appl Genet 126:923–935

    Article  CAS  PubMed  Google Scholar 

  • Fuentes F, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange C (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79:47–59

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332

    Article  CAS  PubMed  Google Scholar 

  • Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57:3639–3645

    Article  CAS  PubMed  Google Scholar 

  • Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza R, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliano G (2014) Plant carotenoids: genomics meets multi-gene engineering. Curr Opin Plant Biol 19:111–117

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trend Biotech 26:139–145

    Article  CAS  Google Scholar 

  • Goo YM, Han EH, Jeong JC, Kwak SS, Yu J, Kim YH, Ahn MJ, Lee SW (2015) Over expression of the sweet potato IbOr gene results in the increased accumulation of carotenoid and confers tolerance to environmental stresses in transgenic potato. C R Biol 338:12–20

    Article  PubMed  Google Scholar 

  • Gross J (1987) Pigments in fruits. Academic, London

    Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Maoka T, Osawa A, Hattan J, Kanamoto H, Shindo K, Otomatsu T, Misawa N (2014) Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res 23:303–315

    Article  CAS  PubMed  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Article  Google Scholar 

  • Hentschel V, Katja K, Hollmann J, Lindhauer MG, Böhm V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668

    Article  CAS  PubMed  Google Scholar 

  • Hinchee MAW, Connor-Wood DV, Newwll CA, Mcdonnell RE, Sato SJ, Gasser CS, Fiscchhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plant using Agrobacterium-mediated DNA transfer. Nat Biotech 6:915–922

    Article  CAS  Google Scholar 

  • Hotz C, Loechl C, Lubowa A, Tumwine JK, Ndeezi G, Masawi AN, Baingana R, Carriquiry A, de Brauw A, Meenakshi JV, Gilligan DO (2012) Introduction of β-carotene-rich orange sweet potato in rural Uganda results in increased vitamin A intakes among children and women and improved vitamin A status among children. J Nutr 142:1871–1880

    Article  CAS  PubMed  Google Scholar 

  • Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67

    Article  CAS  PubMed  Google Scholar 

  • Ihemere U, Sayre RT (2008) Transgenic cassava. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 7, transgenic sugar, tuber and fiber crops. Blackwell, London

    Google Scholar 

  • Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

    Article  CAS  PubMed  Google Scholar 

  • Just BJ, Santos CA, Yandell BS, Simon PW (2009) Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated wild carrot cross. Theor Appl Genet 119:1155–1169

    Article  PubMed  Google Scholar 

  • Kaneko S, Nagamine T, Yamada T (1995) Esterification of endosperm lutein with fatty acids during the storage of wheat seeds. Biosc Biotech Biochem 59:1–4

    Article  CAS  Google Scholar 

  • Kidd PM (2011) Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 16:355–364

    PubMed  Google Scholar 

  • Kim MJ, Kim JK, Kim HJ, Pak JH, Lee JH, Kim DH, Choi HK, Jung HW, Lee JD, Chung YS, Ha SH (2012) Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One 7, e48287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkade MP, Foolad MR (2013) Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. Theor Appl Genet 126:2163–2175

    Article  CAS  PubMed  Google Scholar 

  • Krinsky NI (1989) Antioxidant function of carotenoids. Free Rad Bio Med 7:617–635

    Article  CAS  Google Scholar 

  • Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Lee SM, Park SR, Jung J, Moon JK, Cheong JJ, Kim M (2007) Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing gamma-tocopherol level in lettuce (Lactuca sativa L.). Mol Cells 24:301–306

    CAS  PubMed  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DJ (2001) A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C, Lu S, Van EJ, Deng XX, Failla M, Thannhauser TW (2012) The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol Plant 5:339–352

    Article  CAS  PubMed  Google Scholar 

  • Lipkie TE, De Moura FF, Zhao ZY, Albertsen MC, Che P, Glassman K, Ferruzzi MG (2013) Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. J Agric Food Chem 61:5764–5771

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci U S A 101:9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, Guo D, Wang Q (2013) Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signaling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotech J 12:105–115

    Article  CAS  Google Scholar 

  • Liu J-X, Chiou C-Y, Shen C-H, Chen P-J, Liu Y-C, Jian C-D, Shen X-L, Shen F-Q, Yeh K-W (2014) RNA interference-based gene silencing of phytoene synthase impairs growth, carotenoids, and plastid phenotype in Oncidium hybrid orchid, vol 3, Springerplus. Springer, p 478

    Google Scholar 

  • Liu L, Shao Z, Zhang M, Wang Q (2015) Regulation of carotenoid metabolism in tomato. Mol Plant 8:28–39

    Article  CAS  PubMed  Google Scholar 

  • Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O’Neill J, Li L (2008) Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 59:213–223

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18:3594–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maass D, Arango J, Wüst F, Beyer P, Welsch R (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4, e6373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maida JM, Mathers K, Alley C (2008) Pediatric ophthalmology in the developing world. Curr Opin Ophthalmol 19:403–408

    Article  PubMed  Google Scholar 

  • Mellado-Ortega E, Hornero-Mendez D (2015) Carotenoids in cereals: an ancient resource with present and future applications. Phytochem Rev 14:873–890.

    Article  CAS  Google Scholar 

  • Moise AR, Al-Babili S, Wurtzel ET (2013) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 18:181–194

    Article  CAS  Google Scholar 

  • Moran NA, Jarvick T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    Article  CAS  PubMed  Google Scholar 

  • Mordente A, Guantario B, Meucci E, Silvestrini A, Lombardi E, Martorana GE, Giardina B, Böhm V (2011) Lycopene and cardiovascular diseases: an update. Curr Med Chem 18:1146–1163

    Article  CAS  PubMed  Google Scholar 

  • Moreno JC, Pizarro L, Fuentes P, Handford M, Cifuentes V, Stange C (2013) Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota. PLoS One 8, e58144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris ML, Ducreux L, Griffiths DW, Stewart D, Davies HV, Taylor MA (2004) Carotenogenesis during tuber development and storage in potato. J Exp Bot 55:975–982

    Article  CAS  PubMed  Google Scholar 

  • Morris WL, Ducreux LJ, Hedden P, Millam S, Taylor MA (2006) Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle. J Exp Bot 57:3007–3018

    Article  CAS  PubMed  Google Scholar 

  • Mou B (2009) Nutrient content of lettuce and its improvement. Curr Nutr Food Sci 5:242–248

    Article  CAS  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Sandmann G, Capell T, Christou P (2011) Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin. Plant Biotechnol J 9:384–393

    Article  CAS  PubMed  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Molec Plant 8:68–82

    Article  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Mol Biol 50:333–359

    Article  CAS  Google Scholar 

  • Njoku DM, Vernon G, Egesi CN, Asante I, Offe FK, Okogbenin E, Kulakow P, Eke-Okoro ON, Ceballos H (2011) Breeding for enhanced β-carotene content in cassava: constraints and accomplishments. J Crop Improv 25:560–571

    Article  CAS  Google Scholar 

  • Nunes AC, Kalkmann DC, Aragão FJ (2009) Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Res 18:661–667

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Ishikura M, Maoka T (2009) Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits. Biosci Biotechnol Biochem 73:1928–1932

    Article  CAS  PubMed  Google Scholar 

  • Olson JA (1994) Needs and sources of carotenoids and vitamin A. Nutr Rev 52:S67–S73

    Article  CAS  PubMed  Google Scholar 

  • Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cepela J, Mateos-Hernandez M, Buell CR, Buckler ES, DellaPenna D, Gore MA, Rocheford T (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotech 23:482–487

    Article  CAS  Google Scholar 

  • Park SC, Kim YH, Kim SH, Jeong YJ, Kim CY, Lee JS, Bae JY, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2015) Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity. Physiol Plant 153:525–537

    Article  CAS  PubMed  Google Scholar 

  • Pixley K, Palacios-Rojas N, Babu R, Mutale R, Surie R, Simpungwe E (2013) Biofortification of maize with provitamin A carotenoids. In: Tanumihardjo SA (ed) Carotenoids and human health. Springer Science, New York, pp 271–292

    Google Scholar 

  • Pons E, Alquézar B, Rodríguez A, Martorell P, Genovés S, Ramón D, Rodrigo MJ, Zacarías L, Peña L (2014) Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotechnol J 12:17–27

    Article  CAS  PubMed  Google Scholar 

  • Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255–263

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Marcos JF, Zacarías L (2004) Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J Agric Food Chem 52:6724–6731

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Alquezar B, Alos E, Lado J, Zacarias L (2013) Biochemical bases and molecular regulation of pigmentation in the peel of Citrus fruit. Sci Hort 163:42–62

    Article  CAS  Google Scholar 

  • Rodríguez-Concepción M (2010) Supply of precursors for carotenoid biosynthesis in plants. Arch Biochem Biophys 504:118–122

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Stange C (2013) Biosynthesis of carotenoids in carrot: an underground story comes to light. Arch Biochem Biophys 539:110–116

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Suárez C, Mellado-Ortega E, Hornero-Méndez D, Atienza SG (2014) Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum. Plant Molec Biol 84:659–673

    Article  CAS  Google Scholar 

  • Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotech 18:666–669

    Article  Google Scholar 

  • Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  PubMed  CAS  Google Scholar 

  • Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24:413–419

    Article  CAS  PubMed  Google Scholar 

  • Rosati C, Diretto G, Giuliano G (2009) Biosynthesis and engineering of carotenoids and apocarotenoids in plants: state of the art and future prospects. Biotechnol Genetic Eng Rev 26:139–162

    Article  Google Scholar 

  • Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Siritunga D, Taylor N, Vanderschuren H, Zhang P (2011a) BioCassava plus program: biofortification of cassava for sub- Saharan Africa. Annu Rev Plant Biol 62:251–272

    Article  CAS  PubMed  Google Scholar 

  • Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Sisitunga D, Taylor N, Vanderschuren H, Zhang P (2011b) The BioCassava plus program: biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol 62:251–272

    Article  CAS  PubMed  Google Scholar 

  • Schaub P, Al-Babili S, Drake R, Beyer P (2005) Why is golden rice golden (yellow) instead of red? Plant Physiol 138:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt MA, Parrott WA, Hildebrand DF, Berg RH, Cooksey A, Pendarvis K, He Y, McCarthy F, Herman EM (2014) Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnol J 13:590–600

    Article  PubMed  CAS  Google Scholar 

  • Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241

    Article  CAS  PubMed  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  CAS  PubMed  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec 5:291–317

    Article  Google Scholar 

  • Simikin AJ, Gaffé J, Alcaraz JP, Carde JP, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochem 68:1545–1556

    Article  CAS  Google Scholar 

  • Singh A, Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Stange C, Fuentes P, Handford M, Pizarro L (2008) Daucus carota as a novel model to evaluate the effect of light on carotenogenic gene expression. Biol Res 41:289–301

    Article  PubMed  Google Scholar 

  • Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q, Leng P (2012) Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. J Exp Bot 63:3097–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor M, Ramsay G (2005) Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiol Plant 124:143–151

    Article  CAS  Google Scholar 

  • Thakkar SK, Maziya-Dixon B, Dixon AGO, Failla ML (2007) β-carotene micellarization during in vitro digestion and uptake by Caco-2 cells is directly proportional to β-carotene content in different genotypes of cassava. J Nutr 137:2229–2233

    CAS  PubMed  Google Scholar 

  • Thakkar SK, Huo T, Maziya-Dixon B, Failla ML (2009) Impact of style of processing on retention and bioaccessibility of β-carotene in cassava (Manihot esculanta, Crantz). J Agric Food Chem 57:344–1348

    Article  CAS  Google Scholar 

  • Tunmegamire S, Mwarya R, Andrade ML, Low JW, Ssemakula GN, Laurie AM, Chipungu FP, Ndirigue J, Agili S, Karanja L, Chiona M, Njoku JC, Mtunda K, Ricardo J, Adofo K, Carey E, Cgruneberg WJ (2014). Orange-fleshed sweet potato for Africa. Catalog 2014, 2nd edn. International Potato Center (CIP), Lima Peru, 74 p

    Google Scholar 

  • Van Eck J, Conlin B, Garvin DF, Mason H, Navarre DA, Brown CR (2007) Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. Amer J Potato Res 84:331–342

    Article  Google Scholar 

  • Wang C, Zeng J, Li Y, Hu W, Chen L, Miao Y, Deng P, Yuan C, Ma C, Chen X, Zang M, Wang Q, Li K, Chang J, Wang Y, Yang G, He G (2014) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65:2545–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Yu B, Gruber MY, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene. J Agric Food Chem 58:9572–9578

    Article  CAS  PubMed  Google Scholar 

  • Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West KP (2002) Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr 132:2857S–2866S

    CAS  PubMed  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  CAS  PubMed  Google Scholar 

  • Wurtzel ET, Cuttriss A, Vallabhaneni R (2012) Maize provitamin A carotenoids, current resources, and future metabolic engineering challenges. Frontiers Plant Sci 29:1–12

    Google Scholar 

  • Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402

    Article  CAS  PubMed  Google Scholar 

  • Ye VM, Bhatia SK (2012) Metabolic engineering strategies for the production of beneficial carotenoids in plants. Food Sci Biotechnol 21:1511–1517

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Gruber MY, Khachatourians GG, Zhou R, Epp DJ, Hegedus DD, Parkin IA, Welsch R, Hannoufa A (2012) Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus. J Exp Bot 63:5189–5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Lydiate DJ, Young LW, Schäfer UA, Hannoufa A (2013) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17:573–585

    Article  CAS  Google Scholar 

  • Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165

    Article  CAS  PubMed  Google Scholar 

  • Zaripheh S, Nara TY, Nakamura MT, Erdman JW Jr (2006) Dietary lycopene downregulates carotenoid 15, 15′-monooxygenase and PPAR-gamma in selected rat tissues. J Nutr 136:932–938

    CAS  PubMed  Google Scholar 

  • Zhang J, Tao N, Xu Q, Zhou W, Cao H, Xu J, Deng X (2009) Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle). Plant Cell Rep 28:1737–1746

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Mcquinn R, Fei Z, Wolters AMA, Van Eck J, Brown C, Giovannoni J, Li L (2011) Regulatory control of high levels of carotenoid accumulation in potato tubers. Plant Cell Environ 34:1020–1030

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Naqvi S, Capell T, Christou P (2009) Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch Biochem Biophys 483:182–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in our laboratory has been supported by grants from the Spanish Ministerio de Ciencia e Innovación, and Ministerio de Economia y Competitividad, and also from the Generalitat Valenciana (Prometeo 2014/0027). LZ and MJR are members of the IBERCAROT network funded by CYTED (ref. 112RT0445). EA was the recipient of a JAE-postdoctoral contract (CSIC-FSE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Zacarias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alós, E., Rodrigo, M.J., Zacarias, L. (2016). Manipulation of Carotenoid Content in Plants to Improve Human Health. In: Stange, C. (eds) Carotenoids in Nature. Subcellular Biochemistry, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-39126-7_12

Download citation

Publish with us

Policies and ethics