Skip to main content

The Effect of Surface Heterogeneity on the Vertical Structure of the Saharan Convective Boundary Layer

  • Conference paper
  • First Online:
Perspectives on Atmospheric Sciences

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 2823 Accesses

Abstract

The dynamical mechanisms that control the evolution of the Saharan atmospheric boundary layer (SABL) play a significant role in the atmospheric global circulation and thus the global climate (e.g. dust transport). The convective SABL height can reach up to 4–6 km, making it one of the deepest boundary layers of the planet. The widely homogeneous desert region, characterized by high levels of incoming solar radiation when intercepted by land surfaces of different soil and vegetation characteristics, alter the surface energy balance significantly. In order to investigate the land—atmosphere interactions over this region, the National Center for Atmospheric Research’s large-eddy simulation code (LES) is coupled, in a two-way interaction mode, to the Noah land surface model (LSM). Initial conditions for the LES-LSM system are provided by real case simulations carried out with the mesoscale Weather Research and Forecasting model (WRF). Results from the coupled LES-LSM are compared to airborne observations and ideal surface heterogeneity scenarios are simulated and analyzed in order to investigate the effect of surface anomalies on the vertical structure of the SABL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale eta model. J Geophys Res 108(D22):8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Gamo M (1996) Thickness of the dry convection and large-scale subsidence above deserts. Bound-Layer Meteorol 79(3):265–278

    Article  Google Scholar 

  • Garcia-Carreras L, Parker DJ, Marsham JH, Rosenberg PD, Brooks IM, Lock AP, Marenco F, Mcquaid JB, Hobby M (2015) The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer. J Atmos Sci 72:693–713. doi:10.1175/JAS-D-13-0384.1

    Article  Google Scholar 

  • Huang Q, Marsham JH, Parker DJ, Tian W, Grams CM (2010) Simulations of the effects of surface heat flux anomalies on stratification, convective growth, and vertical transport within the Saharan boundary layer. J Geophys Res 115:D05201. doi:10.1029/2009JD012689

    Google Scholar 

  • Kustas WP, Albertson JD (2003) Effects of surface temperature contrast on land-atmosphere exchange: a case study from monsoon 90. Water Resour Res 39:1159

    Google Scholar 

  • Maronga B, Raasch S (2013) Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Bound-Layer Meteorol 148:309–331. doi:10.1007/s10546-012-9748-z

    Article  Google Scholar 

  • Marsham JH, Parker DJ, Grams CM, Taylor CM, Haywood JM (2008) Uplift of Saharan dust south of the intertropical discontinuity. J Geophys Res 113:D21102. doi:10.1029/2008JD009844

    Article  Google Scholar 

  • Messager C, Parker DJ, Reitebuch O, Agusti-Panareda A, Taylor CM, Cuesta J (2010) Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: observations and analyses from the research flights of 14 and 17 July 2006. QJR Meteorol Soc 136(S1):107–124

    Article  Google Scholar 

  • Moeng C-H (1984) A large-eddy-simulation Model for the study of planetary boundary-layer turbulence. J Atmos Sci, 2052–2062

    Google Scholar 

  • Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62:2078–2097

    Article  Google Scholar 

  • Prigent C, Jiménez C, Catherinot J (2012) Comparison of satellite microwave backscattering (ASCAT) and visible/near-infrared reflectances (PARASOL) for the estimation of aeolian aerodynamic roughness length in arid and semi-arid regions. Atmos Meas Tech 5:2703–2712. doi:10.5194/amt-5-2703-2012

    Article  Google Scholar 

  • Ryder CL, McQuaid JB, Flamant C, Rosenberg PD, Washington R, Brindley HE, Highwood EJ, Marsham JH, Parker DJ, Todd MC, Banks JR, Brooke JK, Engelstaedter S, Estelles V, Formenti P, Garcia-Carreras L, Kocha C, Marenco F, Sodemann H, Allen CJT, Bourdon A, Bart M, Cavazos-Guerra C, Chevaillier S, Crosier J, Darbyshire E, Dean AR, Dorsey JR, Kent J, O’Sullivan D, Schepanski K, Szpek K, Trembath J, Woolley A (2015) Advances in understanding mineral dust and boundary layer processes over the Sahara from fennec aircraft observations. Atmos Chem Phys 15:8479–8520. doi:10.5194/acp-15-8479-2015

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia, J, Gill DO, Barker DM, Duda M, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note, NCAR/TN–475+STR

    Google Scholar 

  • Sühring M, Maronga B, Herbort F, Raasch S (2014) On the effect of surface heat-flux heterogeneities on the mixed-layer top entrainment. Bound-Layer Meteorol 151:531–556. doi:10.1007/s10546-014-9913-7

    Article  Google Scholar 

  • Sullivan PP, McWilliams JC, Moeng CH (1996) A grid nesting method for large-eddy simulation of planetary boundary layer flows. Bound-Layer Meteorol 80:167–202

    Google Scholar 

  • Sullivan PP, Patton EG (2008) A highly parallel algorithm for turbulence simulations in planetary boundary layers: results with meshes up to 10243. In: 18th Conference on boundary layer and turbulence, Stockholm, Sweden (pdf)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Papangelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Papangelis, G., Tombrou, M., Kalogiros, J. (2017). The Effect of Surface Heterogeneity on the Vertical Structure of the Saharan Convective Boundary Layer. In: Karacostas, T., Bais, A., Nastos, P. (eds) Perspectives on Atmospheric Sciences. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-35095-0_16

Download citation

Publish with us

Policies and ethics