Skip to main content

Modelling and Evaluation of Persistent Contrail Formation Regions for Offline and Online Strategic Flight Trajectory Planning

  • Chapter
  • First Online:
Sustainable Aviation

Abstract

This chapter presents a contrail mapping algorithm developed for integration into a Multi-objective Trajectory Optimisation (MOTO) software framework, targeting the mitigation of environmental impacts associated with aviation-induced cloudiness. The presented linear contrail mapping algorithm exploits analytical and empirical models to determine the formation, persistence and radiative properties of contrails along a defined flight trajectory . In order to determine the contrail formation and persistence, the algorithm takes into account aircraft characteristics as well as relative humidity, temperature, pressure as well as the speed and shear of winds aloft, derived from suitable weather forecast data inputs. The linear contrail mapping algorithm generates an accurate mapping of the contrail persistence and associated Radiative Forcing (RF) along a flight trajectory based on inputs of weather data and aircraft state. A 3D contrail mapping algorithm is developed by executing the linear contrail mapping algorithm along an arbitrary number of virtual sounding trajectories. These virtual trajectories are constructed radially around a centre position, at individual flight levels. Multiple 3D mappings are exploited to characterise time variations, ultimately leading to a 4-dimensional (4D) mapping in space and time of contrail formation, persistence and RF properties. These 4D contrail mappings can be exploited in a MOTO software framework to assess and minimise the environmental impacts associated with contrails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Atlas D, Wang Z, Duda DP (2006) Contrails to cirrus—Morphology, microphysics, and radiative properties. J Appl Meteorol Climatol 45:5–19. doi:10.1175/JAM2325.1

    Article  Google Scholar 

  • Burkhardt U, Kärcher B (2011) Global radiative forcing from contrail cirrus. Nat Clim Change 1:54–58

    Article  Google Scholar 

  • E Team (2015), ESRL Global Monitoring Division—GRAD Group. Available: http://www.esrl.noaa.gov/gmd/grad/solcalc/sollinks.html, 7 May 2015

  • European ATM Master Plan—The roadmap for sustainable air traffic management, SESAR JU, Brussels, Belgium, 2012

    Google Scholar 

  • Flightpath 2050: Europe’s vision for aviation—Report of the high level group on aviation research. European Commission—Directorate General for Mobility and Transport, Luxemburg, 2011

    Google Scholar 

  • Galindo AAS, Candelario K (2011) Next generation air transportation system (NextGen)

    Google Scholar 

  • Gardi A, Sabatini R, Ramasamy S, Kistan T (2014) Real-time trajectory optimisation models for next generation air traffic management systems. Appl Mech Mater 629:327–332. doi:10.4028/www.scientific.net/AMM.629.327

    Article  Google Scholar 

  • Gardi A, Sabatini R, Kistan T, Lim Y, Ramasamy S (2015) 4-Dimensional trajectory functionalities for air traffic management systems. In: Proceedings of integrated communication, navigation and surveillance conference (ICNS 2015), Herndon, VA, USA. doi:10.1109/ICNSURV.2015.7121246

  • Gierens K, Jensen E (1998) A numerical study of the contrail-to-cirrus transition. Geophys Res Lett 25(23):4341–4344. doi:10.1029/1998gl900151

    Google Scholar 

  • Kärcher B, Peter T, Biermann U, Schumann U (1996) The initial composition of jet condensation trails. J Atmos Sci 53:3066–3083. doi:10.1175/1520-0469(1996)053

    Article  Google Scholar 

  • Kärcher B, Burkhardt U, Unterstrasser S, Minnis P (2009) Factors controlling contrail cirrus optical depth. Atmos Chem Phys 9:6229–6254. doi:10.5194/acp-9-6229-2009

    Article  Google Scholar 

  • Lee DS, Fahey DW, Forster PM, Newton PJ, Wit RC, Lim LL et al (2009) Aviation and global climate change in the 21st century. Atmos Environ 43:3520–3537

    Article  Google Scholar 

  • Lewellen DC, Lewellen WS (2001) The effects of aircraft wake dynamics on contrail development. J Atmos Sci 58:390–406

    Article  MathSciNet  Google Scholar 

  • Lim Y, Gardi A, Sabatini R (2015) Modelling and evaluation of aircraft contrails for 4-dimensional trajectory optimisation. SAE technical paper 2015-01-2538. doi:10.4271/2015-01-2538

    Google Scholar 

  • Minnis P (2003) Contrails. In: Encyclopedia of atmospheric sciences, pp. 509–520

    Google Scholar 

  • Myhre G, Stordal F (2001) On the tradeoff of the solar and thermal infrared radiative impact of contrails. Geophys Res Lett 28:3119–3122. doi:10.1029/2001gl013193

    Article  Google Scholar 

  • NOAA (2015) NOMADS—NOAA Operational Model Archive and Distribution System. Available: http://nomads.ncep.noaa.gov/, 14 May 2015

  • Oberthür S (2003) Institutional interaction to address greenhouse gas emissions from international transport: ICAO, IMO and the Kyoto Protocol. Clim Policy 3:191–205

    Article  Google Scholar 

  • Organization for nctoolbox development (2015). Available: https://github.com/nctoolbox, 11 May 2015

  • Ramasamy S, Sabatini R, Gardi A, Kistan T (2014) Next generation flight management system for real-time trajectory based operations. Appl Mech Mater 629:344–349. doi:10.4028/www.scientific.net/AMM.629.344

    Article  Google Scholar 

  • Reda I, Andreas A (2008) Solar position algorithm for solar radiation applications. National Renewable Energy Laboratory (NREL), US Dept of Energy NREL/TP-560-34302, Golden, CO, USA

    Google Scholar 

  • Rogers RR (1976) A short course in cloud physics. A. Wheaton & Co.

    Google Scholar 

  • Sabatini R, Gardi A, Ramasamy S, Kistan T, Marino M (2015) Modern avionics and ATM systems for green operations. In: Blockley R, Shyy W (eds) Encyclopedia of aerospace engineering, ch. eae1064. Wiley, New York

    Google Scholar 

  • Schumann U (2012) A contrail cirrus prediction model. Geosci Model Dev 5:543–580. doi:10.5194/gmd-5-543-2012

    Article  Google Scholar 

  • Schumann U, Graf K, Mannstein H (2011) Potential to reduce the climate impact of aviation by flight level changes. In: 3rd AIAA atmospheric and space environments conference, AIAA paper, vol 3376, pp 1–22. doi:10.2514/6.2011-3376

  • Schumann U, Mayer B, Graf K, Mannstein H (2012) A parametric radiative forcing model for contrail cirrus. J Appl Meteorol Climatol 51:1391–1406. doi:10.1175/jamc-d-11-0242.1

    Article  Google Scholar 

  • SESAR and the Environment (2010) SESAR joint undertaking—European Commission, Brussels, Belgium

    Google Scholar 

  • Soler M, Zou B, Hansen M (2014) Flight trajectory design in the presence of contrails: application of a multiphase mixed-integer optimal control approach. Transp Res Part C Emerg Technol 48:172–194. doi:10.1016/j.trc.2014.08.009

    Article  Google Scholar 

  • Sonntag D (1994) Advancements in the field of hygrometry. Meteorol Z 3:51–66

    Google Scholar 

  • Sridhar B, Ng H, Chen N (2011) Aircraft trajectory optimization and contrails avoidance in the presence of winds. J Guid Control Dyn 34:1577–1584. doi:10.2514/1.53378

    Article  Google Scholar 

  • Sussmann R, Gierens KM (2001) Differences in early contrail evolution of two-engine versus four-engine aircraft: Lidar measurements and numerical simulations. J Geophys Res 106(D5), 4899. doi:10.1029/2000jd900533

    Google Scholar 

  • Unterstrasser S, Gierens K, Spichtinger P (2008) The evolution of contrail microphysics in the vortex phase. Meteorol Z 17:145–156. doi:10.1127/0941-2948/2008/0273

    Article  Google Scholar 

  • Veness C (2015) Movable type scripts. Available: http://www.movable-type.co.uk/scripts/latlong.html, 25 March 2015

  • Zou B, Buxi GS, Hansen M (2013) Optimal 4-D aircraft trajectories in a contrail-sensitive environment. Netw Spat Econ. doi:10.1007/s11067-013-9210-x

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sabatini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lim, Y., Gardi, A., Marino, M., Sabatini, R. (2016). Modelling and Evaluation of Persistent Contrail Formation Regions for Offline and Online Strategic Flight Trajectory Planning. In: Karakoc, T., Ozerdem, M., Sogut, M., Colpan, C., Altuntas, O., Açıkkalp, E. (eds) Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-319-34181-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34181-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34179-8

  • Online ISBN: 978-3-319-34181-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics