Skip to main content

Introduction

  • Chapter
  • First Online:
Ensembles on Configuration Space

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 184))

  • 936 Accesses

Abstract

Ensembles on configuration space have wide applicability. They may be used to describe classical, quantum and hybrid quantum-classical systems, physical systems that are deterministic or subject to uncertainty, discrete systems, particles and fields. They also lead to novel reconstructions of quantum theory from physical and geometric axioms. We introduce the basic elements of the theory, discuss a number of classical and quantum examples, and provide an overview of the many generalizations and applications that form the subjects of later chapters. The approach introduces very few physical and mathematical assumptions. The basic building blocks are the configuration space of the physical system, an ensemble of configurations, and dynamics generated from an action principle. An important role is played by the ensemble Hamiltonian which determines the equations of motion. It must satisfy certain requirements which we discuss in detail. We provide examples of classical and quantum systems and show that the primary difference between quantum and classical evolution lies in the choice of the ensemble Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For readers unfamiliar with variational derivatives, more details are given in Appendix A of this book. It is sufficient to recall here that for \(F=\int dx\,g(x,f,\nabla f)\), one has \(\delta F/\delta f=\partial g/\partial f - \nabla \cdot \partial g/\partial (\nabla f)\). The case of discrete configuration spaces is mathematically simpler, as discussed in Sect. 1.3.

  2. 2.

    For continuous configuration spaces P and S are functions, and hence one should more properly write the ensemble Hamiltonian as a functional, H[P, S], in this case. However, it is convenient to use the notation H(P, S) when referring to the general case.

  3. 3.

    Here the defining property of the variational derivative, \(F[f+\delta f] -F[f]= \int dx ({\delta F}/{\delta f})\delta f\) for arbitrary infinitesimal variations \(\delta f\), has been used (see Appendix A of this book).

References

  1. Goldstein, H.: Classical Mechanics. Addison-Wesley, New York (1950)

    MATH  Google Scholar 

  2. Synge, J.L.: Classical Dynamics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/1, pp. 1–225. Springer, Berlin (1960)

    Google Scholar 

  3. Landauer, R.: Path concepts in Hamilton–Jacobi theory. Am. J. Phys. 20, 363–367 (1952)

    Article  ADS  MATH  Google Scholar 

  4. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Physics Uspekhi 40, 1087–1116 (1997)

    Article  ADS  Google Scholar 

  5. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Physik 40, 322–326 (1926)

    Article  ADS  MATH  Google Scholar 

  6. Beichelt, F.: Stochastic Processes in Science, Engineering and Finance, chapter 5. Taylor & Francis, Boca Raton (2006)

    Book  MATH  Google Scholar 

  7. Hall, M.J.W.: Superselection from canonical constraints. J. Phys. A 27, 7799–7811 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bell, J.S.: Beables for quantum field theory. In: Bell, M., Gottfried, K., Veltman, M., John, S. (eds.) Bell on the Foundations of Quantum Mechanics, pp. 159–166. World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  9. Gambetta J., Wiseman, H.M.: Modal dynamics for positive operator measures. Found. Phys. 34, 419–448 (2004) (see also references therein)

    Google Scholar 

  10. Haag, R., Bannier, U.: Comments on Mielnik’s generalized (non linear) quantum mechanics. Commun. Math. Phys. 60, 1–6 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kibble, T.W.B.: Relativistic models of nonlinear quantum Mechanics. Commun. Math. Phys. 64, 73–82 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  12. Weinberg, S.: Testing quantum mechanics. Ann. Phys. (N.Y.) 194, 336–386 (1989)

    Google Scholar 

  13. Hall, M.J.W., Reginatto, M.: Interacting classical and quantum ensembles. Phys. Rev. A 72, 062109 (2005)

    Article  ADS  Google Scholar 

  14. Hall, M.J.W.: Consistent classical and quantum mixed dynamics. Phys. Rev. A 78, 042104 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hall, M.J.W., Reginatto, M.: Schrödinger equation from an exact uncertainty principle. J. Phys. A 35, 3289–3303 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hall, M.J.W., Reginatto, M.: Quantum mechanics from a Heisenberg-type equality. Fortschr. Phys. 50, 646–651 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hall, M.J.W., Kumar, K., Reginatto, M.: Bosonic field equations from an exact uncertainty principle. J. Phys. A 36, 9779–9794 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Reginatto, M.: Exact uncertainty principle and quantization: implications for the gravitational field. Braz. J. Phys. 35, 476–480 (2005)

    Article  ADS  Google Scholar 

  19. Hall, M.J.W.: Exact uncertainty approach in quantum mechanics and quantum gravity. Gen. Relativ. Gravit. 37, 1505–1515 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Reginatto, M., Hall, M.J.W.: Quantum theory from the geometry of evolving probabilities. In: Goyal, P., Giffin, A., Knuth, K.H., Vrscay, E. (eds.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 31st International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Waterloo, Canada, 10–15 July 2011. AIP Conference Proceedings, vol. 1443, American Institute of Physics, Melville, New York (2012)

    Google Scholar 

  21. Reginatto, M., Hall, M.J.W.: Information geometry, dynamics and discrete quantum mechanics. In: von Toussaint, U. (ed.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Garching, Germany, 15–20 July 2012. AIP Conference Proceedings, vol. 1553, American Institute of Physics, Melville, New York (2013)

    Google Scholar 

  22. Reginatto, M.: From probabilities to wave functions: a derivation of the geometric formulation of quantum theory from information geometry. J. Phys.: Conf. Ser. 538, 012018 (2014)

    ADS  Google Scholar 

  23. Reginatto, M.: The geometrical structure of quantum theory as a natural generalization of information geometry. In: Mohammad-Djafari. A., Barbaresco, F. (eds) Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Clos Lucé, Amboise, France, 21–26 Sep 2014. AIP Conference Proceedings, vol. 1641, American Institute of Physics, Melville, New York (2015)

    Google Scholar 

  24. Reginatto, M., Hall, M.J.W.: Quantum-classical interactions and measurement: a consistent description using statistical ensembles on configuration space. J. Phys.: Conf. Ser. 174, 012038 (2009)

    ADS  Google Scholar 

  25. Chua, A.J.K., Hall, M.J.W., Savage, C.M.: Interacting classical and quantum particles. Phys. Rev. A 85, 022110 (2011)

    Article  ADS  Google Scholar 

  26. Hall, M.J.W., Reginatto, M., Savage, C.M.: Nonlocal signaling in the configuration space model of quantum-classical interactions. Phys. Rev. A 86, 054101 (2012)

    Article  ADS  Google Scholar 

  27. Albers, M., Kiefer, C., Reginatto, M.: Measurement analysis and quantum gravity. Phys. Rev. D 78, 064051 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. Reginatto, M.: Cosmology with quantum matter and a classical gravitational field: the approach of configuration-space ensembles. J. Phys.: Conf. Ser. 442, 012009 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. W. Hall .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hall, M.J.W., Reginatto, M. (2016). Introduction. In: Ensembles on Configuration Space. Fundamental Theories of Physics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-34166-8_1

Download citation

Publish with us

Policies and ethics