Skip to main content

Minimally Invasive Total Knee Arthroplasty with Image-Free Navigation

  • Reference work entry
  • First Online:
Minimally Invasive Surgery in Orthopedics
  • 87 Accesses

Abstract

Computer-assisted surgery (CAS) is beginning to emerge as one of the most important technologies in orthopedic surgery. Many of the initial applications of this technology have focused on adult reconstructive surgery of the knee. The value of CAS in total knee arthroplasty (TKA) has been established in many studies. Minimally invasive surgical (MIS) techniques for performing TKA are also receiving extensive and intensive attention. The goals of this chapter are to (1) present the rationale for the use of image-free CAS in knee surgery, (2) explain the rationale for combining CAS with MIS techniques, (3) describe the basic components of an image-free navigation system, (4) illustrate a typical CAS-MIS technique, and (5) present the initial results using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aglietti P, Buzzi R. Posteriorly stabilized total-condylar knee replacement. J Bone Joint Surg. 1988;70-B(2):211–6.

    Google Scholar 

  2. Ayers DC, Dennis DA, Johanson NA, et al. Common complications of total knee arthroplasty. J Bone J Surg. 1997;2(79A):278–311.

    Google Scholar 

  3. Bargren JH, Blaha JD, Freeman MAR. Alignment in total knee arthroplasty: correlated biomechanical and clinical observations. Clin Orthop Relat Res. 1983;173:178–83.

    PubMed  Google Scholar 

  4. Berger RA, Crosset LS, Jacobs JJ. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res. 1998;356:144–53.

    Article  PubMed  Google Scholar 

  5. Cartier P, Sanouillier JL, Frelsamer RP. Unicompartmental knee arthroplasty surgery. 10-year minimum follow-up period. J Arthroplasty. 1996;11:782–8.

    Article  CAS  PubMed  Google Scholar 

  6. Dorr LD, Boiardo RA. Technical considerations in total knee arthroplasty. Clin Orthop Relat Res. 1986;205:5–11.

    PubMed  Google Scholar 

  7. Ecker ML, Lotke PA, Windsor RE, et al. Long-term results after total condylar knee arthroplasty. Significance of radiolucent lines. Clin Orthop Relat Res. 1987;216:151–8.

    PubMed  Google Scholar 

  8. Fehring TK, Odum S, Griffin WL, Mason JB, Naduad M. Early failures in total knee arthroplasty. Clin Orthop Relat Res. 2001;392:315–8.

    Article  PubMed  Google Scholar 

  9. Feng EL, Stulberg SD, Wixson RL. Progressive subluxation and polyethylene wear in total knee replacements with flat articular surfaces. Clin Orthop Relat Res. 1994;299:60–71.

    PubMed  Google Scholar 

  10. Goodfellow JW, O’Connor JJ. Clinical results of the Oxford knee. Clin Orthop Relat Res. 1986;205:21–4.

    PubMed  Google Scholar 

  11. Hsu HP, Garg A, Walker PS, Spector M, Ewald FC. Effect on knee component alignment on tibial load distribution with clinical correlation. Clin Orthop Relat Res. 1989;248:135–44.

    PubMed  Google Scholar 

  12. Insall JW. Surgical approaches to the knee. In: Insall JN, editor. Surgery of the knee. New York: Churchill Livingston; 1984. p. 41–54.

    Google Scholar 

  13. Insall JN, Binzzir R, Soudry M, Mestriner LA. Total knee arthroplasty. Clin Orthop Relat Res. 1985;192:13–22.

    PubMed  Google Scholar 

  14. Insall JN, Ranawat CS, Aglietti P, Shine J. A comparison of four models of total knee-replacement prosthesis. J Bone Joint Surg. 1976;58A:754–65.

    Google Scholar 

  15. Jeffcote B, Shakespeare D. Varus/valgus alignment of the tibial component in total knee arthroplasty. Knee. 2003;10(3):243–7.

    Article  PubMed  Google Scholar 

  16. Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg. 1991;73B:709–14.

    Google Scholar 

  17. Jiang CC, Insall JN. Effect of rotation on the axial alignment of the femur. Clin Orthop Relat Res. 1989;248:50–6.

    PubMed  Google Scholar 

  18. Laskin RS. Alignment of the total knee components. Orthopedics. 1984;7:62.

    CAS  PubMed  Google Scholar 

  19. Laskin RS. Total condylar knee replacement in patients who have rheumatoid arthritis. A ten year follow-up study. J Bone Joint Surg. 1990;72A:529–35.

    Google Scholar 

  20. Laskin RS, Turtel A. The use of an intramedullary tibial alignment guide in total knee replacement arthroplasty. Am J Knee Surg. 1989;2:123.

    Google Scholar 

  21. Nuno-Siebrecht N, Tanzer M, Bobyn JD. Potential errors in axial alignment using intramedullary instrumentation for total knee arthroplasty. J Arthroplasty. 2000;15:228–30.

    Article  CAS  PubMed  Google Scholar 

  22. Oswald MH, Jacob RP, Schneider E, Hoogewoud H. Radiological analysis of normal axial alignment of femur and tibia in view of total knee arthroplasty. J Arthroplasty. 1993;8:419–26.

    Article  CAS  PubMed  Google Scholar 

  23. Petersen TL, Engh GA. Radiographic assessment of knee alignment after total knee arthroplasty. J Arthroplasty. 1988;3:67–72.

    Article  CAS  PubMed  Google Scholar 

  24. Piazza SJ, Delp SL, Stulberg SD, Stern SJ. Posterior tilting of the tibial component decreases femoral rollback in posterior-substituting knee replacement. J Orthop Res. 1998;16:264–70.

    Article  CAS  PubMed  Google Scholar 

  25. Ranawat CS, Boachie-Adjei O. Survivorship analysis and results of total condylar knee arthroplasty. Clin Orthop Relat Res. 1988;226:6–13.

    PubMed  Google Scholar 

  26. Rand JA, Coventry MB. Ten-year evaluation of geometric total knee arthroplasty. Clin Orthop Relat Res. 1988;232:168–73.

    PubMed  Google Scholar 

  27. Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res. 1994;299:153–6.

    PubMed  Google Scholar 

  28. Ritter M, Merbst WA, Keating EM, Faris PM. Radiolucency at the bone-cement interface in total knee replacement. J Bone Joint Surg. 1991;76A:60–5.

    Google Scholar 

  29. Sharkey PF, Hozack WJ, Rothman RH, et al. Why are total knee arthroplasties failing today? Clin Orthop Relat Res. 2002;404:7–13.

    Article  PubMed  Google Scholar 

  30. Stern SH, Insall JN. Posterior stabilized prosthesis: results after follow-up of 9–12 years. J Bone Joint Surg. 1992;74A:980–6.

    Google Scholar 

  31. Teter KE, Bergman D, Colwell CW. Accuracy of intramedullary versus extramedullary tibial alignment cutting systems in total knee arthroplasty. Clin Orthop Relat Res. 1995;321:106–10.

    PubMed  Google Scholar 

  32. Tew M, Waugh W. Tibiofemoral alignment and the results of knee replacement. J Bone Joint Surg. 1985;67B:551–6.

    Google Scholar 

  33. Townley CD. The anatomic total knee: instrumentation and alignment technique. The knee: papers of the First Scientific Meeting of the Knee Society. Baltimore: Baltimore University Press; 1985. p. 39–54.

    Google Scholar 

  34. Vince KIG, Insall JN, Kelly MA. The total condylar prosthesis. 10 to 12 year results of a cemented knee replacement. J Bone Joint Surg. 1989;71B:93–797.

    Google Scholar 

  35. Wasielewski RC, Galante JO, Leighty R, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res. 1994;299:31–43.

    PubMed  Google Scholar 

  36. Hungerford DS, Kenna RV. Preliminary experience with a total knee prosthesis with porous coating used without cement. Clin Orthop Relat Res. 1983;176:95–107.

    PubMed  Google Scholar 

  37. Currie J, Varshney A, Stulberg SD, Adams A, Woods O. The reliability of anatomic landmarks for determining femoral implant = rotation in TKA surgery: implications for CAOS TKA. Presented at the Annual Meeting of Mid-America Orthopaedic Association, Amelia Island. 2005.

    Google Scholar 

  38. Delp SL, Stulberg SD, Davies B, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop Relat Res. 1998;354:49–56.

    Article  PubMed  Google Scholar 

  39. Eichorn H-J. Image-free navigation in ACL replacement with the OrthoPilot System. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 387–96.

    Chapter  Google Scholar 

  40. Ellis RE, Rudan JF, Harrison MM. Computer-assisted high tibial osteotomies. In: DiGioia AM, Jaramaz B, Picard R, Nolte PL, editors. Computer and robotic assisted knee and hip surgery. Oxford: Oxford University Press; 2004. p. 197–212.

    Google Scholar 

  41. Fadda M, Bertelli D, Martelli S, et al. Computer assisted planning for total knee arthroplasty. Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer Assisted Surgery, Grenoble. Berlin: Springer; 1997, p. 619–628.

    Google Scholar 

  42. Froemel M, Portheine F, Ebner M, Radermacher K. Computer assisted template based navigation for total knee replacement. North American Program on Computer Assisted Orthopaedic Surgery, 6–8 Jul 2001, Pittsburgh.

    Google Scholar 

  43. Garbini JL, Kaiura RG, Sidles JA, Larson RV, Matsen FA. Robotic instrumentation in total knee arthroplasty. 33rd Annual Meeting, Orthopaedic Research Society, 19–22 Jan 1987, San Francisco.

    Google Scholar 

  44. Garg A, Walker PS. Prediction of total knee motion using a three-dimensional computer graphics model. J Biochem. 1990;23:45–58.

    CAS  Google Scholar 

  45. Jenny JY, Boeri C. Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement. Acta Orthop Scand. 2004;75(1):74–7.

    Article  PubMed  Google Scholar 

  46. Julliard R, Lavallee S, Dessenne V. Computer assisted anterior cruciate ligament reconstruction of the anterior cruciate ligament. Clin Orthop Relat Res. 1998;354:57–64.

    Article  Google Scholar 

  47. Julliard R, Plaweski S, Lavallee S. ACL surgetics: an efficient computer-assisted technique for ACL reconstruction. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 405–11.

    Chapter  Google Scholar 

  48. Kaiura RG. Robot assisted total knee arthroplasty investigation of the feasibility and accuracy of the robotic process. Master’s Thesis, Mechanical Engineering, University of Washington, Seattle; 1986.

    Google Scholar 

  49. Kienzle TC, Stulberg SD, Peshkin M, et al. A computer-assisted total knee replacement surgical system using a calibrated robot. Orthopaedics. In: Taylor RH et al., editors. Computer integrated surgery. Cambridge, MA: MIT Press; 1996. p. 409–16.

    Google Scholar 

  50. Kinzel V, Scaddan M, Bradley B, Shakespeare D. Varus/valgus alignment of the femur in total knee arthroplasty. Can accuracy be improved by pre-operative CT scanning? Knee. 2004;11(3):197–201.

    Article  PubMed  Google Scholar 

  51. Klos TVS, Habets RJE, Banks AZ, Banks SA, Devilee RJJ, Cook FF. Computer assistance in arthroscopic anterior cruciate ligament reconstruction. In: DiGioia AM, Jaramaz B, Picard R, Nolte PL, editors. Computer and robotic assisted knee and hip surgery. Oxford: Oxford University Press; 2004. p. 229–34.

    Google Scholar 

  52. Krackow K, Serpe L, Phillips MJ, et al. A new technique for determining proper mechanical axis alignment during total knee arthroplasty. Orthopedics. 1999;22(7):698–701.

    CAS  PubMed  Google Scholar 

  53. Kuntz M, Sati M, Nolte LP, et al. Computer assisted total knee arthroplasty. International symposium on CAOS: 17–19 Feb 2000, Davos.

    Google Scholar 

  54. Leitner F, Picard F, Minfelde R, et al. Computer-assisted knee surgical total replacement. First Joint Conference of CVRMed and MRCAS, Grenoble. Berlin: Springer; 1997, p. 629–638.

    Google Scholar 

  55. Leitner F, Picard F, Minfelde R, et al. Computer assisted knee surgical total replacement. Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer Assisted Surgery, Grenoble. Berlin: Springer, 1997; p. 630–638.

    Google Scholar 

  56. Martelli M, Marcacci M, Nofrini L, LA Palombara F, Malvisi A, Iacono F, Vendruscolo P, Pierantoni M. Computer- and robot-assisted total knee replacement: analysis of a new surgical procedure. Ann Biomed Eng. 2000;28(9):1146–53.

    Article  CAS  PubMed  Google Scholar 

  57. Matsen FA, Garbini JL, Sidles JA. Robotic assistance in orthopaedic surgery. A proof of principle using distal femoral arthroplasty. Clin Orthop Relat Res. 1993;296:178–86.

    PubMed  Google Scholar 

  58. Nizard R. Computer assisted surgery for total knee arthroplasty. Acta Orthop Belg. 2002;68(3):215–30 [Review].

    CAS  PubMed  Google Scholar 

  59. Noble PC, Sugano N, Johnston JD, Thompson MT, Conditt MA, Engh Sr CA, Mathis KB. Computer simulation: how can it help the surgeon optimize implant position? Clin Orthop Relat Res. 2003;417:242–52 [Review].

    PubMed  Google Scholar 

  60. Peterman J, Kober R, Heinze R, Frolich JJ, Heeckt PF, Gotzen L. Computer-assisted planning and robot assisted surgery in anterior cruciate ligament reconstruction. Oper Techn Orthop. 2000;10:50–5.

    Article  Google Scholar 

  61. Picard F, Leitner F, Raoult O, Saragaglia D. Computer assisted knee replacement. Location of a rotational center of the knee. Total knee arthroplasty. International Symposium on CAOS, Feb 2000.

    Google Scholar 

  62. Picard F, Moody JE, DiGioia AM, Jaramaz B, Plakseychuk AY, Sell D. Knee reconstructive surgery: preoperative model system. In: DiGioia AM, Jaramaz B, Picard R, Nolte PL, editors. Computer and robotic assisted knee and hip surgery. Oxford: Oxford University Press; 2004. p. 139–56.

    Google Scholar 

  63. Picard F, Moody JE, DiGioia AM, Martinek V, Fu FH, Rytel MJ, Nikou C, LaVarca RS, Jaramaz B. ACL reconstruction-preoperative model system. In: DiGioia AM, Jaramaz B, Picard R, Nolte PL, editors. Computer and robotic assisted knee and hip surgery. Oxford: Oxford University Press; 2004. p. 213–28.

    Google Scholar 

  64. Radermacher K, Staudte HW, Rau G. Computer assisted orthopaedic surgery with image-based individual templates. Clin Orthop Relat Res. 1998;354:28–38.

    Article  PubMed  Google Scholar 

  65. Saragaglia D, Picard F. Computer-assisted implantation of total knee endoprosthesis with no pre-operative imaging: the kinematic model. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 226–33.

    Chapter  Google Scholar 

  66. Sati M, Staubli HU, Bourquin Y, Kunz M, Nolte LP. CRA hip and knee reconstructive surgery: ligament reconstructions in the knee-intra-operative model system (non-image based). In: DiGioia AM, Jaramaz B, Picard R, Nolte PL, editors. Computer and robotic assisted knee and hip surgery. Oxford: Oxford University Press; 2004. p. 235–56.

    Google Scholar 

  67. Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of robot-assisted total knee replacement. Knee. 2002;9(3):173–80.

    Article  PubMed  Google Scholar 

  68. Stulberg SD, Eichorn J, Saragaglia D, Jenny J-Y. The rationale for and initial experience with a knee suite of computer assisted surgical applications. Third International CAOS Meeting, June 2003, Marbella.

    Google Scholar 

  69. Stulberg SD, Picard F, Saragaglia D. Computer assisted total knee arthroplasty. Operative techniques. Orthopaedics. 2000;10(1):25–39.

    Google Scholar 

  70. Stulberg SD, Saragaglia D, Miehlke R. Total knee replacement: navigation technique intra-operative model system. In: DiGioia AM, Jaramaz B, Picard R, Nolte PL, editors. Computer and robotic assisted knee and hip surgery. Oxford: Oxford University Press; 2004. p. 157–78.

    Google Scholar 

  71. Stulberg SD, Sarin V, Loan P. X-ray vs. computer assisted measurement techniques to determine pre and post-operative limb alignment in TKR surgery. Proceedings of the Fourth Annual American CAOS meeting, July 2001, Pittsburgh.

    Google Scholar 

  72. Tibbles L, Lewis C, Reisine S, Rippey R, Donald M. Computer assisted instruction for preoperative and postoperative patient education in joint replacement surgery. Comput Nurs. 1992;10(5):208–12.

    CAS  PubMed  Google Scholar 

  73. Koyonos L, Granieri M, Stulberg SD. At what steps in performance of a TKA do errors occur when manual instrumentation is Used. Presented at the Annual Meeting of American Academy of Orthopaedic Surgeons, Washington, DC; 2005.

    Google Scholar 

  74. Stulberg SD, Koyonos L, McClusker S, Granieri M. Factors affecting the accuracy of minimally invasive TKA. Presented at the Annual Meeting of American Academy of Orthopaedic Surgeons, Washington, DC; 2005.

    Google Scholar 

  75. Tria Jr AJ. Minimally invasive total knee arthroplasty: the importance of instrumentation. Orthop Clin North Am. 2004;35(2):227–34.

    Article  PubMed  Google Scholar 

  76. Briard JL, Stindel E, Plaweski S, et al. CT free navigation with the LCS surgetics station: a new way of balancing the soft tissues in TKA based on bone morphing. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 274–80.

    Chapter  Google Scholar 

  77. Konermann WH, Kistner S. CT-free navigation including soft tissue balancing: LCS-TKA and vector vision systems. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 256–65.

    Google Scholar 

  78. Strauss JM, Ruther W. Navigation and soft tissue balancing of LCS total knee arthroplasty. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 266–73.

    Chapter  Google Scholar 

  79. Bathis H, Perlick L, Tingart M, Luring C, Perlick C, Grifka J. Radiological results of image-based and non-image-based computer-assisted total knee arthroplasty. Int Orthop. 2004;28(2):87–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bohler M, Messner M, Glos W, Riegler ML. Computer navigated implantation of total knee prostheses: a radiological study. Acta Chir Aust. 2000;33(Suppl):63.

    Google Scholar 

  81. Clemens U, Konermann WH, Kohler S, Kiefer H, Jenny JY, Miehlke RK. Computer-assisted navigation with the OrthoPilot System using the search evolution TKA prosthesis. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 236–41.

    Google Scholar 

  82. Jenny JY, Boeri C. Computer-assisted total knee prosthesis implantation without preoperative imaging. A comparison with classical instrumentation. Presented at the Fourth Annual North American Program on Computer Assisted Orthopaedic Surgery, Pittsburgh; 2000.

    Google Scholar 

  83. Jenny JY, Boeri C. Implantation d’une prothese totale de genou assistee par ordinateur. Etude comparative cas-temoin avec une instrumentaiton traditionnelle. Rev Chir Orthop. 2001;87:645–52.

    CAS  PubMed  Google Scholar 

  84. Jenny JY, Boeri C. Navigated implantation of total knee prostheses: a comparison with conventional techniques. Z Orthop Ihre Grenzgeb. 2001;139:117–9.

    Article  CAS  PubMed  Google Scholar 

  85. Jenny JY, Boeri C. Unicompartmental knee prosthesis. A case control comparative study of two types of instrumentation with a five year follow-up. J Arthroplasty. 2002;17:1016–20.

    Article  PubMed  Google Scholar 

  86. Jenny JY, Boeri C. Unicompartmental knee prosthesis implantation with a non-image based navigation system. In: DiGioia AM, Jaramaz B, Picard R, Nolte PL, editors. Computer and robotic assisted knee and hip surgery. Oxford: Oxford University Press; 2004. p. 179–88.

    Google Scholar 

  87. Konermann WH, Sauer MA. Postoperative alignment of conventional and navigated total knee arthroplasty. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 219–25.

    Chapter  Google Scholar 

  88. Lampe F, Hille E. Navigated implantation of the Columbus total knee arthroplasty with the OrthoPilot System: version 4.0. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 248–53.

    Chapter  Google Scholar 

  89. Mattes T, Puhl W. Navigation in TKA with the Navitrack System. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 293–300.

    Chapter  Google Scholar 

  90. Miehlke RK, Clemens U, Jens J-H, Kershally S. Navigation in knee arthroplasty: preliminary clinical experience and prospective comparative study in comparison with conventional technique. Z Orthop Ihre Grenzgeb. 2001;139:1109–29.

    Google Scholar 

  91. Miehlke RK, Clemens U, Kershally S. Computer integrated instrumentation in knee arthroplasty: a comparative study of conventional and computerized technique. Fourth Annual North American Program on Computer Assisted Orthopaedic Surgery, Pittsburgh; 2000, pp. 93–96.

    Google Scholar 

  92. Nishihara S, Sugano N, Ikai M, Sasama T, Tamura Y, Tamura S, Yoshikawa H, Ochi T. Accuracy evaluation of a shape-based registration method for a computer navigation system for total knee arthroplasty. J Knee Surg. 2003;16(2):98–105.

    PubMed  Google Scholar 

  93. Perlick L, Bathis H, Luring C, Tingart M, Grifka J. CT based and CT-free navigation with the brainLAB vector vision system in total knee arthroplasty. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 304–10.

    Chapter  Google Scholar 

  94. Perlick L, Bathis H, Tingart M, Perlick C, Grifka J. Navigation in total-knee arthroplasty: CT-based implantation compared with the conventional technique. Acta Orthop Scand. 2004;75(4):464–70.

    Article  PubMed  Google Scholar 

  95. Perlick L, Bathis H, Tingart M, Kalteis T, Grifka J. Usability of an image based navigation system in reconstruction of leg alignment in total knee arthroplasty – results of a prospective study. Biomed Tech (Berl). 2003;48(12):339–43 [German].

    Article  CAS  Google Scholar 

  96. Picard F, Leitner F, Raoult O, Saragaglia D, Cinquin P. Clinical evaluation of computer assisted total knee arthroplasty. Second Annual North American Program on Computer Assisted Orthopaedic Surgery, Pittsburgh; 1998, p. 239–249.

    Google Scholar 

  97. Saragaglia D, Picard F, Chaussard C, et al. Computer-assisted knee arthroplasty: comparison with a conventional procedure: results of 50 cases in a prospective randomized study. Rev Chir Orthop Reparatrice Appar Mot. 2001;87:215–20.

    CAS  PubMed  Google Scholar 

  98. Saragagaglia D, Picard F, Chaussard D, Montbarbon E, Leitner F, Cinquin P. Computer assisted total knee arthroplasty: comparison with a conventional procedure. Results of 50 cases prospective randomized study. Presented at the First Annual Meeting of Computer Assisted Orthopaedic Surgery, Davos; 2001.

    Google Scholar 

  99. Sparmann M, Wolke B. Knee endoprosthesis navigation with the Stryker System. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 319–23.

    Chapter  Google Scholar 

  100. Sparmann M, Wolke B. Value of navigation and robot-guided surgery in total knee arthroplasty. Orthopade. 2003;32(6):498–505 [German].

    CAS  PubMed  Google Scholar 

  101. Stockl B, Nogler M, Rosiek R, Fischer M, Krismer M, Kessler O. Navigation improves accuracy of rotational alignment in total knee arthroplasty. Clin Orthop Relat Res. 2004;426:180–6.

    Article  PubMed  Google Scholar 

  102. Stulberg SD. CAS-TKA reduces the occurrence of functional outliers. Presented at the Annual Meeting of Mid-America Orthopaedic Association, Amelia Island; 2005.

    Google Scholar 

  103. Stulberg SD, Loan P, Sarin V. Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. J Bone Joint Surg. 2002;84-A Suppl 2:90–8.

    PubMed  Google Scholar 

  104. Wiese M, Rosenthal A, Bernsmann K. Clinical experience using the SurgiGATE System. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 400–4.

    Chapter  Google Scholar 

  105. Wixson RL. Extra-medullary computer assisted total knee replacement: towards lesser invasive surgery. In: Steihl JB, Konermann WH, Haaker RG, editors. Navigation and robotics in total joint and spine surgery. Berlin: Springer; 2004. p. 311–8.

    Chapter  Google Scholar 

  106. Bathis H, Perlick L, Luring C, Kalteis T, Grifka J. CT-based and CT-free navigation in knee prosthesis implantation. Results of a prospective study. Unfallchirurg. 2003;106(11):935–40 [German].

    CAS  PubMed  Google Scholar 

  107. Insall J, Scott N. Surgery of the knee, chapter 95. Philadelphia: Elsevier; 2006. p. 1675–88.

    Google Scholar 

  108. Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging. 2003;22(12):1561–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. David Stulberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Stulberg, S.D. (2016). Minimally Invasive Total Knee Arthroplasty with Image-Free Navigation. In: Scuderi, G., Tria, A. (eds) Minimally Invasive Surgery in Orthopedics. Springer, Cham. https://doi.org/10.1007/978-3-319-34109-5_116

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34109-5_116

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34107-1

  • Online ISBN: 978-3-319-34109-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics