Skip to main content

Plant Roots as Excellent Pathfinders: Root Navigation Based on Plant Specific Sensory Systems and Sensorimotor Circuits

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 23))

Abstract

Roots are underground plant organs hidden in the soil and coping with many environmental challenges. The root system forms ultimately complex networks of roots with numerous root apices at the distal ends of all roots. All these root apices move away from the plant body, being pushed via the elongation region in which cells rapidly elongate. Each root apex acts as an autonomous sensory organ receiving information from numerous sensory systems feeding into the root apex transition zone. The latter is acting as command center navigating growing root apices through very complex underground environment. New root apices are formed continuously behind the growth zone in endogenous manner, initiated at the stele-cortex interface via cell divisions in the pericycle and endodermis. All this allows exploratory root systems to effectively explore and exploit large areas of heterogeneous soil. In order to find out the underlying biological mechanisms, root behavior can be observed and manipulated in laboratory. Roots use their plant-specific cognition and problem-solving apparatus which allows them to exploit heterogeneous soil for water and mineral nutrition. Plant-specific memory and processing of sensory information are discussed also from the perspective of plant-specific unconventional computing. We hope that our better understanding of root behavior will be relevant for the bio-inspired robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Slime mould processors, logic gates and sensors. Philos. Trans. Math. Phys. Eng. Sci. 373, 2046 (2015)

    Article  Google Scholar 

  2. Aoki, R., Tsuboi, T., Okamoto, H.: Y-maze avoidance: an automated and rapid associative learning paradigm in zebrafish. Neurosci. Res. 91, 69–72 (2015)

    Article  Google Scholar 

  3. Baluška, F. (ed.): Long-Distance Systemic Signaling and Communication in Plants. Springer, Berlin (2013)

    Google Scholar 

  4. Baluška, F., Mancuso, S.: Root apex transition zone as oscillatory zone. Front. Plant Sci. 4, 354 (2013)

    Google Scholar 

  5. Baluška, F., Mancuso, S., Volkmann, D., et al.: The ’root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signal Behav. 4, 1121–1127 (2009)

    Article  Google Scholar 

  6. Baluška, F., Mancuso, S., Volkmann, D., et al.: Root apex transition zone: a signalling-response nexus in the root. Trends Plant Sci. 15, 402–408 (2010)

    Article  Google Scholar 

  7. Beekman, M., Latty, T.: Brainless but multi-headed: decision making by the acellular slime mould Physarum polycephalum. J. Mol. Biol. 427, 3734–3743 (2015)

    Google Scholar 

  8. Bhatla, N., Horvitz, H.R.: Light and hydrogen peroxide inhibit C. elegans feeding through gustatory receptor orthologs and pharyngeal neurons. Neuron 85, 804–818 (2015)

    Article  Google Scholar 

  9. Burbach, C., Markus, K., Zhang, Y., et al.: Photophobic behavior of maize roots. Plant Signal Behav. 7, 874–878 (2012)

    Article  Google Scholar 

  10. Calvo, P., Baluška, F.: Conditions for minimal intelligence across eukaryota: a cognitive science perspective. Front. Psychol. 6, 1329 (2015)

    Google Scholar 

  11. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuits Syst. 18, 507–519 (1971)

    Google Scholar 

  12. Cognato Gde, P., Bortolotto, J.W., Blazina, A.R., et al.: Y-Maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol. Learn. Mem. 98, 321–328 (2012)

    Article  Google Scholar 

  13. Darwin, C., Darwin, F.: The power of movement in plants. John Murray (1880)

    Google Scholar 

  14. Dicke, M., Baldwin, I.T.: The evolutionary context for herbivore-induced plant volatiles: beyond the ’cry for help’. Trends Plant Sci. 15, 167–175 (2010)

    Article  Google Scholar 

  15. Falik, O., Mordoch, Y., Quansah, L., et al.: Rumor has it..: relay communication of stress cues in plants. PloS One 6, e23625 (2011)

    Article  Google Scholar 

  16. Falik, O., Mordoch, Y., Ben-Natan, D., et al.: Plant responsiveness to root-root communication of stress cues. Ann. Bot. 110, 271–280 (2012)

    Article  Google Scholar 

  17. Feldman, L.J., Briggs, W.R.: Light-regulated gravitropism in seedling roots of maize. Plant Physiol. 83, 241–243 (1987)

    Article  Google Scholar 

  18. Fromm, J., Lautner, S.: Electrical signals and their physiological significance in plants. Plant Cell Environ. 30, 249–257 (2007)

    Article  Google Scholar 

  19. Galis, I., Gaquerel, E., Pandey, S.P., et al.: Molecular mechanisms underlying plant memory in JA-mediated defence responses. Plant Cell Environ. 32, 617–627 (2009)

    Article  Google Scholar 

  20. Gilroy, S., Suzuki, N., Miller, G., et al.: A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 19, 623–630 (2014)

    Article  Google Scholar 

  21. Hahn, A., Zimmermann, R., Wanke, D., et al.: The root cap determines ethylene-dependent growth and development in maize roots. Mol. Plant 1, 359–367 (2008)

    Article  Google Scholar 

  22. Heil, M., Karban, R.: Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144 (2010)

    Article  Google Scholar 

  23. Holopainen, J.K., Blande, J.D.: Molecular plant volatile communication. Adv. Exp. Med. Biol. 739, 17–31 (2012)

    Article  Google Scholar 

  24. Jaskiewicz, M., Conrath, U., Peterhänsel, C.: Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12, 50–55 (2011)

    Article  Google Scholar 

  25. Kutschera, U., Briggs, W.R.: From Charles Darwin’s botanical country-house studies to modern plant biology. Plant Biol. 11, 785–795 (2009)

    Article  Google Scholar 

  26. Latty, T., Beekman, M.: Food quality and the risk of light exposure affect patch-choice decisions in the slime mold Physarum polycephalum. Ecology 91, 22–27 (2010)

    Article  Google Scholar 

  27. Markin, V.S., Volkov, A.G., Chua, L.: An analytical model of memristors in plants. Plant Signal. Behav. 9, e972887 (2014)

    Article  Google Scholar 

  28. Matoh, T.: Boron in plant cell walls. Plant Soil. 193, 59–70 (1997)

    Article  Google Scholar 

  29. Olton, D.S.: Mazes, maps, and memory. Am. Psychol. 34, 583–596 (1979)

    Article  Google Scholar 

  30. Rasmann, S., Kollner, T.G., Degenhardt, J., et al.: Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434, 732–737 (2005)

    Article  Google Scholar 

  31. Reid, C.R., Latty, T., Dussutour, A., et al.: Slime mold uses an externalized spatial memory to navigate in complex environments. Proc. Natl. Acad. Sci. U. S. A. 109, 17490–17494 (2012)

    Article  Google Scholar 

  32. Reid, C.R., Beekman, M., Latty, T., et al.: Amoeboid organism uses extracellular secretions to make smart foraging decisions. Behav. Ecol. 24, 812–818 (2013)

    Article  Google Scholar 

  33. Stork, W., Diezel, C., Halitschke, R., et al.: An ecological analysis of the herbivory-elicited JA burst and its metabolism: plant memory processes and predictions of the moving target model. PloS One 4, e4697 (2009)

    Article  Google Scholar 

  34. Suzuki, T., Tanaka, M., Fujii, T.: Function of light in the light-induced geotropic response in Zea roots. Plant Physiol. 67, 225–228 (1981)

    Article  Google Scholar 

  35. Tanada, T.: A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic acid. Proc. Natl. Acad. Sci. U. S. A. 59, 376 (1968)

    Article  Google Scholar 

  36. Tanada, T.: Substances essential for a red, far-red light reversible attachment of mung bean root tips to glass. Plant Physiol. 43, 2070 (1968)

    Article  Google Scholar 

  37. Tanada, T.: Boron-induced bioelectric field change in mung bean hypocotyl. Plant Physiol. 53, 775–776 (1974)

    Article  Google Scholar 

  38. Volkov, A.G., Reedus, J., Mitchell, C.M., et al.: Memristors in the electrical network of Aloe vera L. Plant Signal. Behav. 9, e29056 (2014a)

    Article  Google Scholar 

  39. Volkov, A.G., Tucket, C., Reedus, J., et al.: Memristors in plants. Plant Signal. Behav. 9, 28152 (2014b)

    Article  Google Scholar 

  40. Wan, Y., Jasik, J., Wang, L., et al.: The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24, 551–565 (2012)

    Article  Google Scholar 

  41. Yokawa, K., Baluška, F.: C. elegans and Arabidopsis thaliana show similar behavior: ROS induce escape tropisms both in illuminated nematodes and roots. Plant Signal Behav. 10, e1073870 (2015)

    Google Scholar 

  42. Yokawa, K., Kagenishi, T., Kawano, T., et al.: Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signal Behav 6, 1460–1464 (2011)

    Article  Google Scholar 

  43. Yokawa, K., Kagenishi, T., Baluška, F.: Root photomorphogenesis in laboratory-maintained Arabidopsis seedlings. Trends Plant Sci. 18, 117–119 (2013)

    Article  Google Scholar 

  44. Yokawa, K., Derrien-Maze, N., Mancuso, S., et al.: Binary decisions in maize root behavior: Y-maze system as tool for unconventional computation in plants. Int. J. Unconv. Comput. 10, 381–390 (2014)

    Google Scholar 

  45. Yokawa, K., Fasano, R., Kagenishi, T., et al.: Light as stress factor to plant roots - case of root halotropism. Front. Plant Sci. 5, 718 (2014)

    Article  Google Scholar 

  46. Yokawa, K., Koshiba, T., Baluška, F.: Light-dependent control of redox balance and auxin biosynthesis in plants. Plant Signal. Behav. 9, e29522 (2014)

    Article  Google Scholar 

  47. Yunghans, H., Jaffe, M.: Phytochrome controlled adhesion of mung bean root tips to glass: a detailed characterization of the phenomenon. Physiol. Plant. 23, 1004–1016 (1970)

    Article  Google Scholar 

Download references

Acknowledgments

Ken Yokawa was supported by the JSPS (Japanese Society for the Promotion of Science) Postdoctoral Fellowship. This work was supported in part by JSPS KAKENHI, Grant-in-Aid for JSPS fellows, No. 261654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Yokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yokawa, K., Baluška, F. (2017). Plant Roots as Excellent Pathfinders: Root Navigation Based on Plant Specific Sensory Systems and Sensorimotor Circuits. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics