Skip to main content

Wave Trace and Poisson Formula

  • Chapter
  • First Online:
Spectral Theory of Infinite-Area Hyperbolic Surfaces

Part of the book series: Progress in Mathematics ((PM,volume 318))

  • 1594 Accesses

Abstract

On a compact manifold, the wave trace is defined to be the distributional trace of the wave operator, \(U(t):= e^{it\sqrt{\Delta }}\). This is easily seen to be a spectral invariant, because it can be written explicitly as

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardos, C., Guillot, J.-C., Ralston, J.: La relation de Poisson pour l’équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion. Commun. PDE 7, 905–958 (1982)

    MathSciNet  MATH  Google Scholar 

  2. Borthwick, D.: Upper and lower bounds on resonances for manifolds hyperbolic near infinity. Commun. PDE 33, 1507–1539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chazarain, J.: Formule de Poisson pour les variétés riemanniennes. Invent. Math. 24, 65–82 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Verdière, Y.C.: Spectre du laplacien et longueurs des géodésiques périodiques. C. R. Acad. Sci. Paris Sér. A-B 275, A805–A808 (1972)

    MATH  Google Scholar 

  5. de Verdière, Y.C.: Spectre du laplacien et longueurs des géodésiques périodiques. I, II. Compos. Math. 27, 83–106 (1973). 159–184

    Google Scholar 

  6. Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29, 39–79 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guillarmou, C., Naud, F.: Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds. Commun. Anal. Geom. 14, 945–967 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guillopé, L., Zworski, M.: Scattering asymptotics for Riemann surfaces. Ann. Math. 145, 597–660 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guillopé, L., Zworski, M.: The wave trace for Riemann surfaces. Geom. Funct. Anal. 9, 1156–1168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Joshi, M.S., Barreto, A.S.: The wave group on asymptotically hyperbolic manifolds. J. Funct. Anal. 184, 291–312 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lax, P., Phillips, R.S.: The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46, 280–350 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lax, P.D., Phillips, R.S.: Decaying modes for the wave equation in the exterior of an obstacle. Commun. Pure Appl. Math. 22, 737–787 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Melrose, R.B.: Scattering theory and the trace of the wave group. J. Funct. Anal. 45, 29–40 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Melrose, R.B.: Polynomial bounds on the distribution of poles in scattering by an obstacle. Journées “Équations aux derivées partielles” (Saint Jean de Monts, 1987). École Polytechnique, Palaiseau (1987). Exp. No. X

    Google Scholar 

  15. Melrose, R.B.: Weyl asymptotics for the phase in obstacle scattering. Commun. PDE 13, 1431–1439 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Perry, P.A.: A Poisson summation formula and lower bounds for resonances in hyperbolic manifolds. Int. Math. Res. Not. 2003 (34), 1837–1851 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Perry, P.A.: The spectral geometry of geometrically finite hyperbolic manifolds. Festschrift for the Sixtieth Birthday of Barry Simon. Proc. Sympos. Pure Math. 76, 289–327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sjöstrand, J., Zworski, M.: Distribution of scattering poles near the real axis. Commun. PDE 17, 1021–1035 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Taylor, M.E.: Noncommutative Harmonic Analysis. American Mathematical Society, Providence (1986)

    Book  MATH  Google Scholar 

  20. Zelditch, S.: The inverse spectral problem. In: Surveys in Differential Geometry, vol. IX, pp. 401–467. International Press, Somerville (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borthwick, D. (2016). Wave Trace and Poisson Formula. In: Spectral Theory of Infinite-Area Hyperbolic Surfaces. Progress in Mathematics, vol 318. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-33877-4_11

Download citation

Publish with us

Policies and ethics