Skip to main content

Optimal Point Sets for Quasi-Monte Carlo Integration of Bivariate Periodic Functions with Bounded Mixed Derivatives

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 163))

Abstract

We investigate quasi-Monte Carlo (QMC) integration of bivariate periodic functions with dominating mixed smoothness of order one. While there exist several QMC constructions which asymptotically yield the optimal rate of convergence of \(\mathscr {O}(N^{-1}\log (N)^{\frac{1}{2}})\), it is yet unknown which point set is optimal in the sense that it is a global minimizer of the worst case integration error. We will present a computer-assisted proof by exhaustion that the Fibonacci lattice is the unique minimizer of the QMC worst case error in periodic \(H^1_\text {mix}\) for small Fibonacci numbers N. Moreover, we investigate the situation for point sets whose cardinality N is not a Fibonacci number. It turns out that for \(N=1,2,3,5,7,8,12,13\) the optimal point sets are integration lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezdek, J.C., Hathaway, R.J., Howard, R.E., Wilson, C.A., Windham, M.P.: Local convergence analysis of a grouped variable version of coordinate descent. J. Optim. Theory Appl. 54(3), 471–477 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bilyk, D., Temlyakov, V.N., Yu, R.: Fibonacci sets and symmetrization in discrepancy theory. J. Complex. 28, 18–36 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  5. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gau\(\beta \)-Seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Larcher, G., Pillichshammer, F.: A note on optimal point distributions in \([0,1)^s\). J. Comput. Appl. Math. 206, 977–985 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for convex differentiable minimization. J. Optim. Theory Appl. 72(1), 7–35 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley series in probability and statistics. Wiley, New York (1997)

    MATH  Google Scholar 

  9. Niederreiter, H.: Quasi-Monte Carlo Methods and Pseudo-Random Numbers, Society for Industrial and Applied Mathematics (1987)

    Google Scholar 

  10. Niederreiter, H., Sloan, I.H.: Integration of nonperiodic functions of two variables by Fibonacci lattice rules. J. Comput. Appl. Math. 51, 57–70 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Volume II: Standard Information for Functionals. European Mathematical Society Publishing House, Zürich (2010)

    Book  MATH  Google Scholar 

  12. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  13. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables, Society for Industrial and Applied Mathematics (1987)

    Google Scholar 

  14. Pillards, T., Vandewoestyne, B., Cools, R.: Minimizing the \(L_2\) and \(L_\infty \) star discrepancies of a single point in the unit hypercube. J. Comput. Appl. Math. 197, 282–285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, New York and Oxford (1994)

    MATH  Google Scholar 

  16. Sós, V.T., Zaremba, S.K.: The mean-square discrepancies of some two-dimensional lattices. Stud. Sci. Math. Hung. 14, 255–271 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Temlyakov, V.N.: Error estimates for Fibonacci quadrature formulae for classes of functions. Trudy Mat. Inst. Steklov 200, 327–335 (1991)

    Google Scholar 

  18. Ullrich, T., Zung, D.: Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square. Math. Nachr. 288(7), 743–762 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical tensor approximation. SIAM J. Matrix Anal. Appl. 33(2), 639–652 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wahba, G.: Smoothing noisy data with spline functions. Numer. Math. 24(5), 383–393 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. White, B.E.: On optimal extreme-discrepancy point sets in the square. Numer. Math. 27, 157–164 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zinterhof, P.: Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 185, 121–132 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Christian Kuske and André Uschmajew for valuable hints and discussions. Jens Oettershagen was supported by the Sonderforschungsbereich 1060 The Mathematics of Emergent Effects of the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Oettershagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hinrichs, A., Oettershagen, J. (2016). Optimal Point Sets for Quasi-Monte Carlo Integration of Bivariate Periodic Functions with Bounded Mixed Derivatives. In: Cools, R., Nuyens, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods. Springer Proceedings in Mathematics & Statistics, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-33507-0_19

Download citation

Publish with us

Policies and ethics