Skip to main content

Biomaterial–Cell Tissue Interactions in Surface Engineered Carbon-Based Biomedical Implants and Devices

  • Chapter
  • First Online:
Surgical Tools and Medical Devices

Abstract

Implantable prosthesis and medical devices are subjected to several interacting forces whenever they come in contact with the physiologic systems (blood, immune, musculoskeletal, nervous, digestive, respiratory, reproductive and urinary) and organs of the human body. These interactions include the effects of core body temperature (and/or variable temperatures in the oral cavity), the body physiologic fluids containing several ions and biomolecules, proteins and cells of various progeny and functions. This chapter focuses on cell tissue–implant interactions and how carbon-based implants are being developed for next-generation implantable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bittl, J. A. (1996). Advances in coronary angioplasty. New England Journal of Medicine, 335, 1290–1302.

    Google Scholar 

  2. Gawaz, M., Neumann, F. J., Ott, I., May, A., & Schomig, A. (1996). Circulation, 94, 279–285.

    Google Scholar 

  3. Inoue, T., Sakai, Y., Fujito, T., Hoshi, K., Hayashi, T., Takayanagi, K., et al. (1996). Circulation, 94, 1518–1523.

    Google Scholar 

  4. Lahann, J., Klee, D., Thelen, H., Bienert, H., Vorwerk, D., & Hocker, H. (1999). Journal of Materials Science: Materials in Medicine, 10, 443–448.

    Google Scholar 

  5. Haycox, C. L., & Ratner, B. D. (1993). Journal of Biomedical Materials Research, 27, 1181–1193.

    Google Scholar 

  6. Courtney, J. M., Lamba, N. M. K., Sundaram, S., & Forbes, C. D. (1994). Biomaterials, 15, 737–744.

    Google Scholar 

  7. Klein, C. L., Nieder, P., Wagner, M., Kohler, H., Bittinger, F., Kirkpatrick, C. J., et al. (1994). Journal of Pathophysiology, 5, 798–807.

    Google Scholar 

  8. Gutensohn, K., Beythien, C., Koester, R., Bau, J., Fenner, T., Grewe, et al. (2000) Infusionstherapie und Transfusionmedizin, 27(4), 200–206.

    Google Scholar 

  9. Yang, Y. (1996). S. F Franzen, C.L Olin. Cells and Materials, 6(4), 339–354.

    Google Scholar 

  10. Yang, Y., Franzen, S. F., & Olin, C. L. (1996). The Journal of Heart Valve Disease, 5, 532–537.

    Google Scholar 

  11. Bittl, J. A. (1996). Subacute stent occlusion: Thrombus horribilis. JACC, 28, 368–370.

    Google Scholar 

  12. Mark, K., Belli, G., Ellis, S., & Moliterno, D. (1996). Journal of the American College of Cardiology, 27, 494–503.

    Google Scholar 

  13. Colombo, A., Hall, P., Nakamura, S., Almagor, Y., Maiello, L., Martini, G., et al. (1995). Circulation, 91, 1676–1688.

    Google Scholar 

  14. Gott, V. L., Koepke, D. E., Daggett, R. L., Zarnstorff, W., & Young, W. P. (1961). The coating of intravascular plastic prostheses with colloidal graphite. Surgery, 50, 382–389.

    Google Scholar 

  15. Haubold, A. (1977). Annals of the New York Academy of Sciences, 283, 383.

    Google Scholar 

  16. Goodman, S. L., Tweden, K. S., & Albrecht, R. M. (1996). Platelet interaction with pyrolytic carbon heart-valve leaflets. Journal of Biomedical Materials Research, 32, 249–258.

    Google Scholar 

  17. Baier, R. E. (1972). The Bulletin of the New York Academy of Medicine, 48, 273.

    Google Scholar 

  18. Williams, D. F. (1989). Journal of Biomedical Engineering, 11, 185.

    Google Scholar 

  19. Salzman, E. (Ed.). (1981). Interaction of blood with natural and artificial surfaces. New York: Marcel Dekker.

    Google Scholar 

  20. Gordon, J. L. (1986). In J. P. Cazenave, J. A. Davies, M. D. Kazatchkine, & W.G. van Aken (Eds.), Blood-surface interactions: Biological principles underlying hemocompatibility with artificial materials (p. 5). Amsterdam: Elsevier Science Publishers (Biomedical Division).

    Google Scholar 

  21. Cenni, E., Arciola, C. R., Ciapetti, G., Granchi, D., Savarino, L., Stea, S., et al. (1995). Biomaterials, 16, 973–976.

    Google Scholar 

  22. Herring, M. B., Gardner, A. & Gloves, J. A. (1978). Surgery, 84, 498.

    Google Scholar 

  23. Remy, M., Bordenave, L., Bareille, R., Rouais, F., Baquey, C., Gorodkov, A., et al. (1994). Journal of Materials Science Materials in Medicine, 5, 808.

    Google Scholar 

  24. Pesakova, V., Klezl, Z., Balik, K., & Adam, M. (2000). Journal of Material Science: Materials in Medicine, 11, p797.

    Google Scholar 

  25. Hallab, N. J., Bundy, K. J., O’Connor, K., Clark, R., & Moses, R. L. (1995) Journal of Long-Term Effects of Medical Implants, 5, 209.

    Google Scholar 

  26. Ahluwalia, A., Basta, G., Chiellini, F., Ricci, D., & Vozzi, G. (2001). Journal of Material Science: Materials in Medicine, 12, 613–619.

    Google Scholar 

  27. Bowlin, G. L., & Rittger, S. E. (1997). Cell Transplantation, 6, 623.

    Google Scholar 

  28. Altankov, G., & Grott, T. (1997). Journal of Biomaterials Science, Polymer Edition, 8, 299.

    Google Scholar 

  29. Grinnell, F. (1978). International Review of Cytology, 53, p65.

    Google Scholar 

  30. Van Wachem, P. B., Schakenraad, J. M., Feijen, J., Beugeling, T., van Aken, W. G., Blaauw, E. H., et al. (1989). Biomaterials, 10, 532–539.

    Google Scholar 

  31. Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., & van Aken, W. G. (1985). Biomaterials, 6, 403–408.

    Google Scholar 

  32. McLaughlin, J., Meenan, B., Maguire, P., & Jamieson, N. (1996). Properties of diamond like carbon thin film coatings on stainless steel medical guidewires. Diamond and Related Materials, 8, 486–491.

    Google Scholar 

  33. Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (1999). Hemocompatibility of DLC and TiC-TiN interlayers in titanium. Diamond and Related Materials, 8, 457–462.

    Google Scholar 

  34. Okpalugo, T. I. T., Ogwu, A. A., Maguire, P., & McLaughlin, J. A. D. (2001). Technology and health care. International Journal of Health Care Engineering, 9(1–2), 80–82.

    Google Scholar 

  35. Okpalugo, T. I. T., Ogwu, A. A., Maguire, P. D., McLaughlin, J. A., & Hirst, D. G. (2004). In-vitro blood compatibility of a-C:H: Si and a-C: H thin films. Diamond and Related Materials, 13(4–8), 1088–1092.

    Google Scholar 

  36. Okpalugo, T. I. T., Ogwu, A. A., Maguire, P. D., & McLaughlin, J. A. (2004). Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials, 25(3), 239–245.

    Google Scholar 

  37. Okpalugo, T. I. T., McKenna, E., Magee, A. C., McLaughlin, J. A., & Brown, N. M. D. (2004). The MTT assays of bovine retinal pericytes and human microvascular endothelial cells on DLC and Si-DLC-coated TCPS. Journal of Biomedical Materials Research, Part A, 71A(2), 201–208.

    Google Scholar 

  38. Okpalugo, T. I. T., Maguire, P. D., Ogwu, A. A., & McLaughlin, J. A. (2004). The effect of silicon doping and thermal annealing on the electrical and structural properties of hydrogenated amorphous carbon thin films. Diamond and Related Materials, 13(4–8), 1549–1552.

    Google Scholar 

  39. Okpalugo, T. I. T., Ogwu, A. A., Maguire, P. D., McLaughlin, J. A., & McCullough, R. W. (2006). Human micro-vascular endothelial cellular interaction with atomic N-doped compared to Si-doped DLC. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 78B(2), 222–229.

    Google Scholar 

  40. Okpalugo, T. I. T. (2002). The hemocompatibility of ultra-smooth silicon and nitrogen doped hydrogenated amorphous carbon thin films—The role of the microstructure, electrical properties, and surface energy (G2c., Ph.D., Ulster, 53-4066). (BL: DXN062999).

    Google Scholar 

  41. Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., & Wood, J. V. (1993). Diamond and Related Materials, 93, 118.

    Google Scholar 

  42. Dion, I., Roques, X., Baquey, C., Baudet, E., Basse Cathalinat, B., & More, N. (1999). Biomedical Materials and Engineering, 3, 51–55 (spring).

    Google Scholar 

  43. O’Leary, A., Bowling, D. P., Donnelly, K., O’Brien, T. P., Kelly, T. C., Weill, N., et al. (1995). Key Engineering Materials, 99–100, 301–308.

    Google Scholar 

  44. Freitas, R. A., IMM report number 12. http://www.imm.org/reports/rep012.html

  45. Allen, M., Law, F. C., & Rushton, N. (1994). Clinical Materials, 17, p1–p10.

    Google Scholar 

  46. Allen, M. J., Myer, B. J., Law, F. C., & Rushton, N. (1995). Transaction of Orthopaedic Research Society, 20, 489.

    Google Scholar 

  47. Szent-Gyorgyi, A. (1957). Bioenergetics. New York: Academic Press.

    Google Scholar 

  48. Szent-Gyorgyi, A. (1946). Nature, 157, 875.

    Google Scholar 

  49. Eley, D. D., Parfitt, G. D., Perry, M. J., & Taysum, D. H. (1953). Transactions of the Faraday Society, 49, 79.

    Google Scholar 

  50. Postow, E., & Rosenberg, B. (1970). Bioenergetics, 1, 467.

    Google Scholar 

  51. Bruck, S. D. (1965). Polymer, 6, 319.

    Google Scholar 

  52. Bruck, S. D. (1967). Journal of Polymer Science Part C, 17, 169.

    Google Scholar 

  53. Bruck, S. D. (1973). Intrinsic semiconduction, electronic conduction of polymers and blood compatibility. Nature, 243, 416–417.

    Article  Google Scholar 

  54. Bruck, S. D. (1975). The role of electrical conduction of macromolecules in certain biomedical problems. Polymer, 16, 25.

    Google Scholar 

  55. Van Oss, C. J. (1978). Phagocytosis as a surface phenomenon. Annual Review of Microbiology, 32, 19–39.

    Google Scholar 

  56. Kochwa, S., Litwak, R. S., Rosenfield, R. E., & Leonard, E. F. (1977). Annals of New York Academy of Sciences, 283, 37.

    Google Scholar 

  57. Lettington, A. H. (1991). Applications of diamond films and related materials. In Y. Tzeng, et al (Ed.), Materials science monographs (Vol. 73, p. 703). New York: Elsevier.

    Google Scholar 

  58. Evans, A. C., Franks, J., & Revell, P. J. (1991). Surface and Coatings Technology, 47, 662–667.

    Google Scholar 

  59. Grill, A. (1999). Diamond and Related Materials, 8, 428.

    Google Scholar 

  60. Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al. (2000). Thrombosis Research, 99, 577–585.

    Google Scholar 

  61. Gutensohn, K., Beythien, C., Koester, R., Bau, J., Fenner, T., Grewe, P., et al. (2000). Infusionstherapie und Transfusionmedizin, 27(4), 200–206.

    Google Scholar 

  62. Zheng, C., Ran, J., Yin, G., & Lei, W. (1991). In Y. Tzeng, et al (Ed.), Applications of diamond films and related materials, materials science monographs (Vol. 73, p. 711). New York: Elsevier.

    Google Scholar 

  63. Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (2000). Journal of Biomedical Materials Research, 52(2), 413–421.

    Google Scholar 

  64. Alanazi, A., Nojiri, C., Noguchi, T., et al. (2000). ASAIO Journal, 46(4), 440–443.

    Google Scholar 

  65. Alanazi, A., Nojiri, C., Noguchi, T., Ohgoe, Y., Matsuda, T., Hirakuri, K., et al. (2000). Artificial Organs, 24(8), 624–627.

    Google Scholar 

  66. Bangali, Z., & Shea, L. D. (2005). MRS Bulletin, 30(9), 659.

    Google Scholar 

  67. Morrison, M. L., Buchanan, R. A., Liaw, P. K., Berry, C. J., Brigmon, R. L., Riester, L., et al. (2006). Electrochemical and antimicrobial properties of diamond like carbon-metal composite films. Diamond and Related Materials, 15(1), 138–146.

    Google Scholar 

  68. Maizza, G., Saracco, G., & Abe, Y. (1999). Advances in science and technology. In Vincenzini, P. (Eds.), 9th Cimetec-World Forum on New Materials, Faenza (pp. 75–82).

    Google Scholar 

  69. Dowling, D. P., Kola, P. V., Donnelly, K., Kelly, T. C., Brumitt, K., Lloyd, L., et al. (1997). Diamond and Related Materials, 6, 390–393.

    Google Scholar 

  70. Tiainen, V. M. (2001). Diamond and Related Materials, 10, 153–160.

    Google Scholar 

  71. Butter, R. S., & Lettington, A. H. (1995). DLC for biomedical applications (reviews). Journal of Chemical Vapor Deposition, 3, 182–192.

    Google Scholar 

  72. Higson, S. P. J., & Vadgama, P. M. (1995). Analytica Chemica Acta, 300, 77–83.

    Google Scholar 

  73. Higson, S. P. J., & Vadgama, P. M. (1995). Biosensors and Bioelectronics, 10(5), VIII.

    Google Scholar 

  74. Du, C., Su, X. W., Cui, F. Z., & Zhu, X. D. (1998). Biomaterials, 19, 651–658.

    Google Scholar 

  75. Cui, F. Z., & Li, D. J. (2000). Surface Coatings Technology, 131, 481–487.

    Google Scholar 

  76. Ivanov-Omskii, V. I., Panina, L. K., & Yastrebov, S. G. (2000). Carbon, 38, 495–499.

    Google Scholar 

  77. Dyuzhev, G. A., Ivanov-Omskii, V. I., Kuznetsova, E. K., Rumyantsev, V. D., et al (1996). Journal of Molecular Materials, 8, 103–106.

    Google Scholar 

  78. Ivanov-Omskii, V. I., Tolmatchev, A. V., & Yastrebov, S. G. (1996). Philosophical Magazine Part B, 73(4), 715–722.

    Google Scholar 

  79. Andrade, J. D. (Ed.). (1988). Surface and interfacial aspect of biomedical polymers. Protein Adsorption (Vol. 2). New York: Plenum.

    Google Scholar 

  80. William, D. F. (1985). Physiological and microbiological corrosion CRC Crit (review). Biocompatibility, 1, 1–30.

    Google Scholar 

  81. William, D. F. (Ed.) (1987). Definitions in biomaterials. Amsterdam: Elsevier.

    Google Scholar 

  82. William, D. F. (1981). Systemic aspects of biocompatibility (Vol. 1–2). Boca Raton: CRC Press.

    Google Scholar 

  83. Martini, F. C. (2001). Fundamentals of anatomy and physiology (5th ed.). New Jersey, USA: Prentice Hall.

    Google Scholar 

  84. Hoffman, A. S. (1982). Advances in Chemistry Series, 199, 3.

    Google Scholar 

  85. Vroman, L. (1977). Annals of the New York Academy of Science, 283, 65 (L. Vroman & E. F. Leonard (Eds.)).

    Google Scholar 

  86. National Heart, Lung, and Blood Institute (NHBLI). (1980). Clinical Guidelines for Biocompatibility. Washington D.C., USA.

    Google Scholar 

  87. Neumann, A. W., Absolom, D. R., Francis, D. W., Omenyi, S. N., Spelt, J. K., Policova, Z., et al. (1983). Annals of the New York Academy of Sciences, 416, 276.

    Google Scholar 

  88. Srinivasan, S., & Sawyer, P. N. (1970). Journal of Colloid and Interface Science, 32(3), 456.

    Google Scholar 

  89. Sawyer, P. N., & Pate, J. W. (1953). American Journal of Physiology, 175, 113.

    Google Scholar 

  90. Sawyer, P. N., & Srinavasan, S. (1967). American Journal of Physiology, 114, 42.

    Google Scholar 

  91. Srinivasan, S., & Sawyer, P. N. (1969). JAAMI, 3, 116.

    Google Scholar 

  92. Martin, J. G., Afshar, A., Kaplitt, M. J., Chopra, P. S., Srinivasan, S., & Sawyer, P. N. (1968). Implantation studies with some non-metallic prostheses. Transaction of American Society for Artificial Internal Organ, 14, 78.

    Google Scholar 

  93. Wilcox, C. D., Dove, S. B. McDavid, W. D., & Greer, D. B., Imagetool. http://ddsdx.uthscsa.edu/dig/itdesc

  94. Baier, R. E. (1972). The Bulletin of the New York Academy of Medicine, 48, 273.

    Google Scholar 

  95. Baier, R. E., Loeb, G. I., & Wallace, G. T. (1971). Federation Proceedings, 30, 1523–1538.

    Google Scholar 

  96. Chen, J. Y., Leng, Y. X., Tian, X. B., Wang, L. P., Huang, N., Chu, P. K., et al. (2002). Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti (Ta + 5)O2 thin films. Biomaterials, 23, 2545.

    Google Scholar 

  97. Curtis, A. (2004). Tutorial on the biology of nanotopography. IEEE Transactions on Nanobioscience, 3(4), 293–295.

    MathSciNet  Google Scholar 

  98. Matsuda, T., & Kurumatani, H. (1990). Surface induced in vitro angiogenesis: Surface property is a determinant of angio-genesis. ASAIO Transactions, 36, M565–M568.

    Google Scholar 

  99. Hubbell, J. A., Massia, S. P., & Drumheller, P. D. (1992). Surface-grafted cell-binding peptides in tissue engineering of vascular graft. Annals of the New York Academy of Sciences, 665, 253–258.

    Google Scholar 

  100. Goodman, S. L., Lelah, M. D., Lambrecht, L. K., Cooper, S. L., & Albrecht, R. M. (1984). Scanning Electron Microscopy, 1, 279.

    Google Scholar 

  101. Dowling, D. P., Kola, P. V., Donnelly, K., Kelly, T. C., Brumitt, K., Lloyd, L., et al. (1997). Diamond and Related Materials, 6, 390–393.

    Google Scholar 

  102. Allen, M., Law, F. C., & Rushton, N. (1994). Clinical Materials, 17, p1–p10.

    Google Scholar 

  103. Hauert, R., Muller, U., Francz, G., Birchler, F., Schroeder, A., Mayer, J., et al. (1997). Thin Solid Films, 308–309, 191–194.

    Google Scholar 

  104. Allen, M., Butter, R., Chandra, L., Lettington, A., & Rushton, N. (1995). Biomedical Materials and Engineering, 5(3), 151–159.

    Google Scholar 

  105. McColl, I. R., Grant, D. M., Green, S. M., et al. (1993). Diamond and Related Materials, 3, 83.

    Google Scholar 

  106. Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., & Wood, J. V. (1993). Diamond and Related Materials, 93, 118.

    Google Scholar 

  107. Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., & Wood, J. V. (1994). Diamond and Related Materials, 3, 1120–1123.

    Google Scholar 

  108. Thomson, L. A., Law, F. C., Rushton, N., & Franks, J. (1991). Biomaterials, 12, 37–40.

    Google Scholar 

  109. Allen, M., Myer, B., & Rushton, N. J. (2001). Journal of Biomedical Materials Research, 58(3), 319–328.

    Google Scholar 

  110. Schroeder, A., Francz, G., Bruinink, A., Hauert, R., Mayer, J., & Wintermantel, E. (2000). Biomaterials, 21, 449–456.

    Google Scholar 

  111. Lu, L., Jones, M. W., & Wu, R. L. C. (1993). Biomedical Materials and Engineering, 3, 223.

    Google Scholar 

  112. Evans, A. C., Franks, J., & Revell, P. J. (1991). Surface and Coatings Technology, 47, 662–667.

    Google Scholar 

  113. Ames, B. N., McCann, J., & Yamasaki, E. (1975). Mutation Research, 31, 347–367.

    Google Scholar 

  114. Bruck, S. D. (1977). Biomaterials, Medical Devices, and Artificial Organs, 5(1).

    Google Scholar 

  115. McHargue, C. J. (1991). In: Y. Tzeng et al. (Eds.), Application of diamond films and related materials, materials science monographs (p. 113). New York: Elsevier.

    Google Scholar 

  116. Devlin, D., et al. (1997). In: B. Simons (Ed.), Proceedings of the ASME International Mechanical Engineering Congress and Exposition (p. 265), Fairfield, NJ, USA: Bioengineering Division.

    Google Scholar 

  117. Gordon, J. L. (1986). In J. P. Cazenave, J. A. Davies, M. D. Kazatchkine, van Aken, W. G. (Eds.), Blood-surface interactions: Biological principles underlying hemocompatibility with artificial materials (p. 5). Amsterdam: Elsevier Science Publishers (Biomedical Division).

    Google Scholar 

  118. Moncada, S., & Vane, J. R. (1982). The role of prostaglandins in platelet-vessel wall interactions. In H. L. Nossel & H. J. Vogel (Eds.), Pathobiology of endothelial cells (pp. 253–285). New York: Academic Press.

    Google Scholar 

  119. Gimbrone, M. A., Jr. (1986). In M. A. Gimbrone Jr. (Ed.), Vascular endothelium in hemostasis and thrombosis (pp.1–13). Edinburgh: Churchill Livingstone.

    Google Scholar 

  120. Gimbrone, M. A, Jr. (1987). Annals of New York Acad. Sci., 516, 5–11.

    Google Scholar 

  121. Chan, T. K., & Chan, V. (1981). Antithrombin III, the major modulator of intravascular coagulation is synthesised by human endothelial cells. Thrombosis and Haemostasis, 46(1981), 504–506.

    Google Scholar 

  122. Busch, C., Ljungman, C., Heldin, C.-M., Waskson, E., & Obrink, B. (1979). Surface properties of cultured endothelial cells. Haemostasis, 8(1979), 142–148.

    Google Scholar 

  123. Jaffe, E. A. (1982). Synthesis of factor VIII by endothelial cells. Annals of New York Academy of Sciences, 401(1982), 163–170.

    Google Scholar 

  124. Mosher, D. F., Doyle, M. J., & Jaffe, E. A. (1982). Secretion and synthesis of thrombospondin by cultured human endothelial cells. Journal of Cell Biology, 93(1982), 343.

    Google Scholar 

  125. Folkman, J., & Haudenschild, C. (1980). Angiogenesis in vitro. Nature, 288, 551–556.

    Google Scholar 

  126. Tonnesen, M. G., Smedly, L. A., & Henson, P. M. (1984). The Journal of Clinical Investigation, 74, 1581–1592.

    Google Scholar 

  127. Kubota, Y., Kleinman, H. K., Martin, G. R., & Lawley, T. J. (1988). Journal of Cell Biology, 107, 1589–1598.

    Google Scholar 

  128. Pauli, B., & Lee, C. (1988). Laboratory Investigation, 58, 379–387.

    Google Scholar 

  129. Picker, L. J., Nakache, M., & Butcher, E. C. (1989). Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types. Journal of Cell Biology, 109(2), 927–937.

    Google Scholar 

  130. Pober, J. (1988). American Journal of Pathology, 133, 426–433.

    Google Scholar 

  131. Berg, E. L., Goldstein, L. A., Jutila, M. A., Nakache, M., Picker, L. J., Streeter, P. R., et al. (1989). Immunological Reviews, 108, 1–18.

    Google Scholar 

  132. Rice, G. E., & Bevilacqua, M. P. (1989). Science, 246, 1303–1306.

    Google Scholar 

  133. Springer, T. (1990). Nature, 346, 425–433.

    Google Scholar 

  134. Hynes, R. (1992). Cell, 69, 11–25.

    Google Scholar 

  135. Folkman, J., Haudenschild, C., & Zetter, B. R. (1979). Proceedings of the National Academy of Sciences of the United States of America, 76, 5217.

    Google Scholar 

  136. Keegan, A., Hill, C., Kumar, S., Phillips, P., Schof, A., & Weiss, J. (1982). Journal of Cell Science, 55, 261.

    Google Scholar 

  137. Charo, I., Karasek, M. A., Davison, P. M., & Goldstein, I. M. (1984). Journal of Clinical Investigation, 74, 914.

    Google Scholar 

  138. Gerritsen, M. E. (1987). Biochemical Pharmacology, 36, 2701–2711.

    Google Scholar 

  139. Fujimoto, T., & Singer, S. J. (1988). Journal of Histochemistry and Cytochemistry, 36, 1309–1317.

    Google Scholar 

  140. Kubota, Y., Kleinman, H. K., Martin, G. R., & Lawley, T. J. (1988). Journal of Cell Biology, 107, 1589.

    Google Scholar 

  141. Ades, E. W., Candal, F., Swerlick, J., George, R. A., Summers Susan, V. G., Bosse, D. C., et al. (1992). Journal of Investigative Dermatology, 99, 683–690.

    Google Scholar 

  142. Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., & van Aken, W. G. (1985). Biomaterials, 6, 403–408.

    Google Scholar 

  143. Van Wachem, P. B., Schakenraad, J. M., Feijen, J., Beugeling, T., van Aken, W. G., Blaauw, E. H., et al. (1989). Biomaterials, 10, 532–539.

    Google Scholar 

  144. Kaukonen, M., Nieminen, R. M., Poykko, S., & Settsonen, A. (1999). Nitrogen doping of amorphous carbon surfaces. Physical Review Letters, 83(25), 5346–5349.

    Google Scholar 

  145. Ganong, W. F. (1995). Ganong’s review of medical physiology (17th ed.). New York: Appleton & Lang.

    Google Scholar 

  146. Chen, J. Y., Wang, L. P., Fu, K. Y., Huang, N., Leng, Y., Leng, Y. X., et al. (2002). Surface and Coatings Technology, 156, 289–294.

    Google Scholar 

  147. Krishnan, L. K., Varghese, N., Muraleedharan, C.V., Bhuvaneshwar, G.S., Derangere, F., Sampeur, Y., et al. (2002). Biomolecular Engineering, 1–3.

    Google Scholar 

  148. Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al. (2000). Thrombosis Research, 99, 577–585.

    Google Scholar 

  149. Ogwu, A. A., Lamberton, R. W., McLaughlin, J. A., & Maguire, P. D. (1999). Journal of Physics Part D. Applied Physics, 32, 981.

    Google Scholar 

  150. Jiu, J. T., Wang, H., Cao, C. B., & Zhu, H. S. (1999). Journal Materials Science, 34, 5205–5209.

    Google Scholar 

  151. Dementjev, A. P., Petukhov, M. N., & Baranov, A. M. (1998). Diamond and Related Materials, 7, 1534–1538.

    Google Scholar 

  152. Dementjev, A. P., & Petukhov, M. N. (1997). Diamond and Related Materials, 6, 486.

    Google Scholar 

  153. Grill, A., Meyerson, B., Patel, V., Reimer, J. A., & Petrich, M. A. (1987). Journal of Applied Physics, 61, 2874.

    Google Scholar 

  154. Miyake, S., Kaneko, R., Kikuya, Y., & Sugimoto, I. (1991). Transactions of the ASME Journal of Tribology, 113, 384.

    Google Scholar 

  155. Baker, M. A., & Hammer, P. (1997). Surface and Interface Analysis, 25, 629–642.

    Google Scholar 

  156. Demichelis, F., Pirri, C. F., & Tagliaferro, A. (1992). Materials Science and Engineering B, 11, 313–316.

    Google Scholar 

  157. Li, D. J., Cui, F. Z., Gu, H. Q., & Adhesion, J. (1999). Sci. Technol., 13, 169.

    Google Scholar 

  158. Linder, S., Pinkowski, W., & Aepfelbacher, M. (2002). Biomaterials, 23, 767–773.

    Google Scholar 

  159. Goodman, S. L., Cooper, S. L., & Albrecht, R. M. (1991). Journal of Biomaterials Science, Polymer Edition, 2(2), 147–159.

    Google Scholar 

  160. Tangen, D., Berman, H. J., & Marfey, P. (1971). Thrombosis et Diathesis Haemorrhagica, 25, 268.

    Google Scholar 

  161. Schakenraad, J. M., Busscher, H. J., Wildevuur, C. R. H., & Arends, J. (1988). Cell Biophysics, 13, 75.

    Google Scholar 

  162. Goodman, S. L., Cooper, S. L., & Albrecht, R. M. (1985). In Y. Nose, C. Kjellstrand, & P. Ivanovich (Eds.) Progress in artificial organs (pp. 1050–1055). Cleveland, OH: ISAO Press.

    Google Scholar 

  163. Schakenraad, J. M., Busscher, H. J., Wildevuur, C. R. H., & Arends, J. (1986). Journal of Biomedical Materials Research, 20, 773.

    Google Scholar 

  164. Grinnell, F. (1987). Annals of the New York Academy of Sciences, 516, 280.

    Google Scholar 

  165. Grinnell, F. (1986). Journal of Cell Biology, 103, 2697.

    Google Scholar 

  166. Feuerstein, I. A. (1987). Annals of the New York Academy of Sciences, 516, 484

    Google Scholar 

  167. Park, K., & Park, H. (1989). Scanning Microscopy, 3(Suppl), 137.

    Google Scholar 

  168. Pitt, W. G., Spiegelberg, S. H., & Cooper, S. L. (1987). Transactions of the Society for Biomaterials, 10, 59.

    Google Scholar 

  169. Park, K., Mosher, D. F., & Cooper, S. L. (1985). Journal of Biomedical Materials Research, 20, 589.

    Google Scholar 

  170. Brash, J. L. (1985). Macromolecular Chemistry, 9(Suppl), 69.

    Google Scholar 

  171. Lambrecht, L. K., Young, B. R., Stafford, R. E., Park, K., Albrecht, R. M., Mosher, D. F., et al. (1986). Thrombosis Research, 41, 99.

    Google Scholar 

  172. Wildner, O., Lipkow, T., & Knop, J. (1992). Increased expression of ICAM-1, E-selectin and V-CAM-1 by cultured endothelial cells upon exposure to haptens. Experimental Dermatology, 1, 191.

    Google Scholar 

  173. Klein, C. L., Nieder, P., Wagner, M., Kohler, H., Bittinger, F., Kirkpatrick, C. J., et al. (1994). Journal of Pathophysiology, 5, 798–807.

    Google Scholar 

  174. Albelda, S., Smith, C., & Ward, P. (1994). Adhesion molecules and inflammatory injury. FASEB Journal, 8, 504–512.

    Google Scholar 

  175. Gerdes, J., Schwab, U., Lemke, H., & Stein, H. (1983). Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. International Journal of Cancer, 31(1), 13–20.

    Google Scholar 

  176. Thomas, W. E. (1999). Brain Research Reviews, 31(1), 42–57.

    Google Scholar 

  177. http://users.ahsc.arizona.edu/davis/bbbpericytes.htm

  178. Chen, X., & Zuckerman, S. T. (2005). Weiyuan John Kao. Intracellular protein phosphorylation in adherent U937 monocytes mediated by various culture conditions and fibronectin-derived surface ligands. Biomaterials, 26(8), 873–882.

    Google Scholar 

  179. Fournier, J. A., Calabuig, J., Merchán, A., Augé, J. M., Melgares, R., Colman, T., et al. (2001). Revista Espanola de Cardiologia, 54(5), 567–572.

    Google Scholar 

  180. De Scheerder, I., Szilard, M., Yanming, H., Ping, X. B., Verbeken, E., Neerinck, D., et al. (2000). The Journal of Invasive Cardiology, 12(8), 389–394.

    Google Scholar 

  181. Tran, H. S., Puc, M. M., Hewitt, C. W., Soll, D. B., Marra, S. W., Simonetti, V. A., et al. (1999). Journal of Investigative Surgery: The Official Journal of the Academy of Surgical Research, 12(3), 133–140.

    Google Scholar 

  182. http://www.tiem.utk.edu/~gross/bioed/webmodules/cellattach.htm

  183. Izzard, C. S., & Lochner, L. R. (1976). Cell-to-substrate contacts in living fibroblasts: An interference reflection study with an evaluation of the technique. Journal of Cell Science, 21, 129.

    Google Scholar 

  184. Bereiter-Hahn, J., Fox, C. H., & Thorell, B. (1979). Quantitative reflection contrast microscopy of living cells. Journal of Cell Biology, 82, 767–779.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ali, N. et al. (2016). Biomaterial–Cell Tissue Interactions in Surface Engineered Carbon-Based Biomedical Implants and Devices. In: Ahmed, W., Jackson, M. (eds) Surgical Tools and Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33489-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33487-5

  • Online ISBN: 978-3-319-33489-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics