Skip to main content

A Basic Logic of Formal Inconsistency: mbC

  • Chapter
  • First Online:
Paraconsistent Logic: Consistency, Contradiction and Negation

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 40))

  • 438 Accesses

Abstract

This chapter begins a formal study of Logics of Formal Inconsistency (LFIs) by offering a careful survey of the basic logic of formal inconsistency, mbC. The chapter also lays out the main notation, ongoing definitions and main ideas that will be used throughout the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this book the following standard notation will be adopted: given a function f and a subset A of its domain, f[A] will denote the set \(\{f(a) \ : \ a \in A\}\).

  2. 2.

    It should be observed that the weak LFIs investigated in the three references mentioned above are also strong LFIs in the sense of Definition 2.1.9.

  3. 3.

    Since it is well-known, it is equivalent to the Axiom of Choice.

  4. 4.

    However, such tables do not correspond to non-deterministic matrices in the sense of Avron and Lev (see [10, 11]). The relationship between valuations for LFIs and non-deterministic matrices will be analyzed in Chap. 6.

  5. 5.

    There are logics which are simultaneously paraconsistent and paracomplete, that is, that allow the fourth scenario in which \(\alpha \) and \(\lnot \alpha \) are both false. Logics of this kind are frequently called paranormal by the literature. One example of paranormality is a tetravalent modal logic that can be associated with Monteiro’s tetravalent modal algebras, see [12]. This example will be analyzed in Chap. 5.

  6. 6.

    It should be observed that Ivlev (see [14]) and other authors use the term ‘quasi-matrices’ to refer to non-deterministic matrices in the sense of of A. Avron and I. Lev .

  7. 7.

    In formal terms, t is recursively defined as follows: \(t(p)=p\) if \(p \in Var\); \(t(\lnot \alpha )={\sim }t(\alpha )\); \(t({\circ }\alpha )={\circ }t(\alpha )\); and \(t(\alpha \, \#\, \beta )= t(\alpha )\, \# \,t(\beta )\) if \(\# \in \{\vee , \wedge , \rightarrow \}\).

  8. 8.

    In formal terms, \(t_0\) is recursively defined as follows: \(t_0(p)=p\) if \(p \in Var\); \(t_0(\lnot \alpha )={\sim }t_0(\alpha )\); and \(t_0(\alpha \, \#\, \beta )= t_0(\alpha )\, \# \,t_0(\beta )\) if \(\# \in \{\vee , \wedge , \rightarrow \}\).

  9. 9.

    In formal terms, \(t'\) is defined recursively as follows: \(t'(p)=p\) if \(p \in Var\); \(t'({\sim }\alpha )=\lnot t'(\alpha )\); and \(t'(\alpha \, \#\,\beta )= t'(\alpha )\, \#\, t'(\beta )\) if \(\# \in \{\vee , \wedge , \rightarrow \}\).

  10. 10.

    Notice that the mapping \(t'\) is necessary only because we consider different signatures for mbC and CPL.

  11. 11.

    Not to be confused with Sette’s P1, see Sect. 4.4.4. To be more precise \(P_1\) contains, besides MP, the inference rule of Uniform Substitution, since the axioms are presented by using propositional variables instead of schema formulas.

References

  1. Carnielli, Walter A., Marcelo E. Coniglio, and João Marcos. 2007. Logics of Formal Inconsistency. In Handbook of Philosophical Logic, 2nd. edn. vol. 14, ed. by Dov M. Gabbay and Franz Guenthner, 1–93. Springe. doi:10.1007/978-1-4020-6324-4_1.

    Google Scholar 

  2. Wójcicki, Ryszard. 1984. Lectures on propositional calculi. Wroclaw, Poland: Ossolineum. http://www.ifispan.waw.pl/studialogica/wojcicki/papers.html.

  3. Carnielli, Walter A., and João Marcos. A taxonomy of C-systems. In [Carnielli, Walter A., Marcelo E. Coniglio, and Itala M.L. D’Ottaviano, eds. 2002. Paraconsistency: The Logical Way to the Inconsistent. Proceedings of the 2nd World Congress on Paraconsistency (WCP 2000), Vol. 228 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York], pp. 1–94.

    Google Scholar 

  4. Coniglio, Marcelo E., and Luiz H. Silvestrini. 2014. An alternative approach for quasi-truth. Logic Journal of the IGPL 22(2): 387–410. doi:10.1093/ljigpal/jzt026.

    Article  Google Scholar 

  5. Coniglio, Marcelo E., Francesc Esteva, and Lluís Godo. 2014. Logics of formal inconsistency arising from systems of fuzzy logic. Logic Journal of the IGPL 22(6): 880–904. doi:10.1093/jigpal/jzu016.

    Article  Google Scholar 

  6. Coniglio, Marcelo E., and Tarcísio G. Rodrigues. 2014. Some investigations on mbC and mCi. In Tópicos de lógicas não clássicas. Nel-Lógica, vol. 1, ed. by Cézar A. Mortari, 11–70, Florianópolis: SC, Brazil, 2014. NEL/UFSC. http://nel.ufsc.br/logica.html.

  7. Mendelson, Elliot. 1987. Introduction to Mathematical Logic, 3rd edn. New York: Chapman & Hall.

    Google Scholar 

  8. da Costa, Newton C.A., and Elias H. Alves. 1976. Une sémantique pour le calcul \({C}_1\) (in French). Comptes Rendus de l’Académie de Sciences de Paris (A-B), 283: 729–731.

    Google Scholar 

  9. da Newton, C.A. 1977. Costa and Elias H. Alves. A semantical analysis of the calculi \({C}_n\). Notre Dame Journal of Formal Logic 18(4): 621–630.

    Article  Google Scholar 

  10. Avron, Arnon, and Iddo Lev. 2001. Canonical propositional Gentzen-type systems. In Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR 2001). LNAI, vol. 2083, ed. by Rajeev Gore, Alexander Leitsch, and Tobias Nipkow, 529–544. Springer.

    Google Scholar 

  11. Avron, Arnon, and Iddo Lev. 2005. Non-deterministic multi-valued structures. Journal of Logic and Computation 15(3): 241–261.

    Article  Google Scholar 

  12. Coniglio, Marcelo E., and Martín Figallo. 2014. Hilbert-style presentations of two logics associated to tetravalent modal algebras. Studia Logica 102(3): 525–539. doi:10.1007/s11225-013-9489-0.

    Article  Google Scholar 

  13. Alves, Elias H. 1976. Lógica e inconsistência: um estudo dos cálculos \({C}_n\)\(1 \le n \le \omega \) (Logic and inconsistency: A study of the calculi \({C}_n\)\(1 \le n \le \omega \), in Portuguese). Masters thesis, FFLCH, State University of São Paulo.

    Google Scholar 

  14. Ivlev, Yury V. 2000. Quasi-matrix logic as a paraconsistent logic for dubitable information. Logic and Logical Philosophy 8: 91–97.

    Article  Google Scholar 

  15. Wójcicki, Ryszard. 1979. Referential matrix semantics for propositional calculi. Bulletin of the Section of Logic 8: 170–176.

    Google Scholar 

  16. Blok, Willem J., and Don Pigozzi. 1989. Algebraizable Logics. Memoirs of the American Mathematical Society, vol. 77(396). Providence, RI, USA: American Mathematical Society.

    Google Scholar 

  17. Czelakowski, Janusz. 2001. Protoalgebraic logics. Trends in Logic Series, vol. 10. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  18. Font, Josep Maria. 2003. Ramón Jansana, and Don Pigozzi. A survey of abstract algebraic logic. Studia Logica 74(1–2): 13–97.

    Google Scholar 

  19. Font, Josep Maria, and Ramón Jansana. 2009. A General Algebraic Semantics for Sentential Logics. Vol. 7 of Lecture Notes in Logic, 2nd ed. Ithaca, NY, USA: Association for Symbolic Logic.

    Google Scholar 

  20. Font, Josep Maria. 2016. Abstract algebraic logic: An introductory textbook. Vol. 60 of Mathematical Logic and Foundations Series. London: College Publications.

    Google Scholar 

  21. da Silva, Jairo J., Itala M.L. D’Ottaviano, and Antonio M.A. Sette. 1999. Translations between logics. In Models, algebras and proofs. Selected papers of the X Latin American symposium on Mathematical Logic held in Bogotá. Lecture Notes in Pure and Applied Mathematics, vol. 203, ed. by Xavier Caicedo and Carlos H. Montenegro, 435–448, New York: Marcel Dekker.

    Google Scholar 

  22. Church, Alonzo. 1956. Introduction to Mathematical Logic - Volume 1. Princeton mathematical series, vol. 17. Princeton University Press.

    Google Scholar 

  23. Wajsberg, Mordchaj. 1967. Metalogische Beiträge II (in German). Wiadomości Matematyczne, 47:119–139, 1939. Trans. by S. McCall as “Contributions to Metalogic II”. In Polish Logic 1920–1939, ed. by Storrs McCall, 319–334. Oxford: Clarendon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Carnielli .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carnielli, W., Coniglio, M.E. (2016). A Basic Logic of Formal Inconsistency: mbC . In: Paraconsistent Logic: Consistency, Contradiction and Negation. Logic, Epistemology, and the Unity of Science, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-33205-5_2

Download citation

Publish with us

Policies and ethics