Skip to main content

Vision: Elementary and Complex Visual Processing

  • Chapter
  • First Online:
Cognitive, Conative and Behavioral Neurology
  • 1339 Accesses

Abstract

Vision directs our attention and attention, in turn, is nature’s answer to massive sensory input that our brains are subjected to. Our senses gather information continuously and hence we are subject to sensory overload. The human sensory system receives ~11 million bits of information per second; yet it has been estimated that we can only process ~16–50 bits per second (0.0002 %). Countless decisions are being made by our brain on a continuous basis, mostly at a nonconscious level from which is derived the very rough estimate that we process only 5 % at the conscious level and 95 % at the nonconscious level [1, 2]. At another level and another approximation, about half of the cortex is concerned with vision and vision usually overrides other senses when there are conflicting inputs. The evolution of our visual system, its predominance over the other senses, and the ability to process most sensory information nonconsciously can only be explained and understood in terms of paleoneurological or evolutionary biological and neuroscientific process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmerman M. The nervous system in the context of information theory. In: Schmidt RF, Thews G, editors. Human physiology. Berlin: Springer; 1989. p. 166–73.

    Chapter  Google Scholar 

  2. Hassin RR, Uleman JS, Bargh JA. The new unconscious. Oxford: Oxford University Press; 2006.

    Book  Google Scholar 

  3. Rowe TB, Macrini TE, Luo ZX. Fossil evidence on origin of the mammalian brain. Science. 2011;332:955–7.

    Article  CAS  PubMed  Google Scholar 

  4. Sereno MI, Allman JM. Cortical visual areas in mammals. In: Levinthal A, editor. The neural basis of visual function. New York, NY: Macmillan; 1991.

    Google Scholar 

  5. Jacobs GH, Tootell RB, Fisher SK, Anderson DH. Rod photoreceptors and scotopic vision in ground squirrels. J Comp Neurol. 1980;189:113–25.

    Article  CAS  PubMed  Google Scholar 

  6. Kaas JH. The evolution of brains from early mammals to humans. Wiley Interdiscip Rev Cogn Sci. 2013;4(1):33–45.

    Article  PubMed  Google Scholar 

  7. Kaas JH, Lyon DC. Visual cortex organization in primates: theories of V3 and adjoining visual areas. Prog Brain Res. 2003;134:285–95.

    Article  Google Scholar 

  8. Isbell LA. The fruit the tree and the serpent. Cambridge, MA: Harvard University Press; 2009.

    Google Scholar 

  9. Lui LL, Dobiecki AE, Bourne JA, Rosa MG. Breaking camouflage: responses of neurons in the middle temporal area to stimuli defined by coherent motion. Eur J Neurosci. 2012;36(1):2063–76. doi:10.1111/j.1460-9568.2012.08121.

    Article  PubMed  Google Scholar 

  10. Mysore SG, Vogels R, Raiguel SE, Orban GA. Shape selectivity for camouflage-breaking dynamic stimuli in dorsal V4 neurons. Cereb Cortex. 2008;18(6):1429–43.

    Article  PubMed  Google Scholar 

  11. Ramachandaran VS, Gregory RL. Perceptual filling in of artificially induced scotomas in human vision. Nature. 1991;350:699–702.

    Article  Google Scholar 

  12. Weiskrantz L. Blindsight: a case study and its implications. Oxford: Oxford University Press; 1986.

    Google Scholar 

  13. Weiskrantz L. Blindsight revisited. Curr Opin Neurobiol. 1996;6:215–20.

    Article  CAS  PubMed  Google Scholar 

  14. Heywood CA, Kentridge RW. Affective blindsight? Trends Cogn Sci. 2000;4(4):125–6.

    Article  PubMed  Google Scholar 

  15. Marshall JC, Halligan PW. Blindsight and insight into visuospatial neglect. Nature. 1988;336:766–7.

    Article  CAS  PubMed  Google Scholar 

  16. Windmann S, Wehrmann M, Calabrese P, Gunturkun O. Role of the prefrontal cortex in attentional control over bistable vision. J Cogn Neurosci. 2006;18:456–71.

    Article  PubMed  Google Scholar 

  17. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Now updated: the definitive neuroscience resource. 5th ed. New York, NY: McGraw Hill; 2013.

    Google Scholar 

  18. Porter PB. Another puzzle-picture. Am J Psychol. 1954;67:550–1.

    Article  Google Scholar 

  19. Larsen A, Bundesen C, Kyllingsbaek S, Paulson OB, Law I. Brain activation during mental transformation of size. J Cogn Neurosci. 2000;12:763–74.

    Article  CAS  PubMed  Google Scholar 

  20. Schoenfeld MA, Nosselt T, Poggel D, Tempelmann C, Hopf JM, Woldorff MG, et al. Analysis of pathways mediating preserved vision after striate cortex lesions. Ann Neurol. 2002;52:814–24.

    Article  PubMed  Google Scholar 

  21. Rizzo M, Nawrot M, Zihl J. Motion and shape perception in cerebral akinetopsia. Brain. 1995;118:1105–27.

    Article  PubMed  Google Scholar 

  22. Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, et al. The human homologue of macaque area V6A. Neuroimage. 2013;82:517–30.

    Article  CAS  PubMed  Google Scholar 

  23. Galletti C, Fattori P, Gamberini M, Kutz DF. The cortical visual area V6: brain location and visual topography. Eur J Neurosci. 1999;11:3922–36.

    Article  CAS  PubMed  Google Scholar 

  24. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC. Visual topography of human intraparietal sulcus. J Neurosci. 2007;27(20):5326–37.

    Article  CAS  PubMed  Google Scholar 

  25. Hadjikhani N, Liu AK, Dale AM, Cavanagh P, Tootell RB. Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci. 1998;1(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  26. Beck DM, Rees G, Frith CD, Lavie N. Neural correlates of change and change blindness. Nat Neurosci. 2001;4:645–50.

    Article  CAS  PubMed  Google Scholar 

  27. Rock I, Linnet CM, Grant PI, Mack A. Perception without attention: results of a new method. Cogn Psychol. 1992;24:502–34.

    Article  CAS  PubMed  Google Scholar 

  28. Scholte HS, Witteveen SC, Spekreijse H, Lamme VA. The influence of inattention on the neural correlates of scene segmentation. Brain Res. 2006;1076:106–15.

    Article  CAS  PubMed  Google Scholar 

  29. Frith CD. In: Kandel and Schwartz (Eds) Principles of neural science, 5th edition. McGraw Hill, New York, NY; 2013.

    Google Scholar 

  30. Guttman SE, Gilroy LA, Blake R. Spatial grouping in human vision: temporal structure trumps temporal synchrony. Vision Res. 2007;47(2):219–30.

    Article  PubMed  Google Scholar 

  31. Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci. 1995;18:555–86.

    Article  CAS  PubMed  Google Scholar 

  32. Overvliet KE, Sayim B. Perceptual grouping determines haptic contextual modulation. Vision Res. 2015;pii:S0042-6989(15)00170-4. doi:10.1016/j.visres.2015.04.016.

    Google Scholar 

  33. Tinbergen N. The Herring Gull’s world. A study of social behavior of birds. London: Collins; 1953.

    Google Scholar 

  34. Ramachandran VS. The tell tale brain. New York, NY: W W Norton & Company; 2011.

    Google Scholar 

  35. Carrera E, Tononi G. Diaschisis; past, present, future. Brain. 2014;137:2408–22.

    Article  PubMed  Google Scholar 

  36. Ffytche D, Blom JD, Catani M. Disorders of visual perception. J Neurol Neurosurg Psychiatry. 2010;81:1280–7. doi:10.1136/jnnp.2008.171348.

    Article  PubMed  Google Scholar 

  37. Fugelsang C, Narici L, Picozza P, Sannita WG. Phosphenes in low earth orbit: survey responses from 59 astronauts. Aviat Space Environ Med. 2006;77:449–52.

    Google Scholar 

  38. Schott CD. Exploring the visual hallucinations of migraine aura: the tacit contribution of illustration. Brain. 2007;130:1690–703.

    Article  CAS  PubMed  Google Scholar 

  39. Landis R, Graves R, Benson F, Hebben N. Visual recognition through kinesthetic mediation. Psychol Med. 1982;12:515–31.

    Article  CAS  PubMed  Google Scholar 

  40. Farah M. Visual agnosia. Cambridge, MA: MIT Press; 2004.

    Google Scholar 

  41. Kinsbourne M, Warrington EK. The localizing significance of limited simultaneous visual form perception. Brain. 1963;86:697–702.

    Article  CAS  PubMed  Google Scholar 

  42. Hartmann JA, Wolz WA, Roeltgen DP, Loverson FL. Denial of visual perception. Brain Cogn. 1991;16:29–40.

    Article  CAS  PubMed  Google Scholar 

  43. Zeki S, Ffytche DH. The Riddoch syndrome: insights into the neurobiology of conscious vision. Brain. 1998;121:25–45.

    Article  PubMed  Google Scholar 

  44. Riddoch G. Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain. 1917;40:15–57.

    Article  Google Scholar 

  45. Wapner W, Judd T, Gardner H. Visual agnosia in an artist. Cortex. 1978;14:343–64.

    Article  CAS  PubMed  Google Scholar 

  46. Nishida Y, Hayashi O, Iwami T, Kimura M, Kani K, Ito R, et al. Stereopsis-processing regions in the human parieto-occipital cortex. Neuroreport. 2001;12(10):2259–63.

    Article  CAS  PubMed  Google Scholar 

  47. Fortin A, Ptito A, Faubert J, Ptito M. Cortical areas mediating stereopsis in the human brain: a PET study. Neuroreport. 2002;13(6):895–8.

    Article  PubMed  Google Scholar 

  48. Orban GA, Sunaert S, Todd JT, Van Hecke P, Marchal G. Human cortical regions involved in extracting depth from motion. Neuron. 1999;24(4):929–40.

    Article  CAS  PubMed  Google Scholar 

  49. Kwee IL, Fujii Y, Matsuzawa H, Nakada T. Perceptual processing of stereopsis in humans: high-field (3.0-tesla) functional MRI study. Neurology. 1999;53(7):1599–601.

    Article  CAS  PubMed  Google Scholar 

  50. Jonas J, Frismand S, Vignal JP, Colnat-Coulbois S, Koessler L, Vespignani H, et al. Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum Brain Mapp. 2014;35(7):3360–71.

    Article  PubMed  Google Scholar 

  51. Mittenberg W, Choi EJ, Apple CC. Stereoscopic visual impairment in vascular dementia. Arch Clin Neuropsychol. 2000;15(7):561–9.

    Article  CAS  PubMed  Google Scholar 

  52. Tseng CH, Gobell JL, Sperling G. Factors that determine depth perception of trapezoids, windsurfers, runways. Front Hum Neurosci. 2015;9:182. doi:10.3389/fnhum.2015.00182. eCollection 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Heywood CA, Kentridge RW. Achromatopsia, color vision, and cortex. Neurol Clin. 2003;21(2):483–500. Review.

    Article  PubMed  Google Scholar 

  54. Daily MN, Cotrrell GW. Prosopagnosia in modular neural network models. Prog Brain Res. 1999;121:165–84.

    Article  Google Scholar 

  55. Ffytche DH, Howard RJ, Brammer MJ, David A, Woodruff P, Williams S. The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat Neurosci. 1998;1:738–42.

    Article  CAS  PubMed  Google Scholar 

  56. Vignal JP, Chauvel P, Halgren E. Localised face processing by the human prefrontal cortex: stimulation-evoked hallucinations of faces. Cogn Neuropsychol. 2000;17(1):281–91. doi:10.1080/026432900380616.

    Article  CAS  PubMed  Google Scholar 

  57. Landis T, Cummings JL, Benson DF, Palmer EP. Loss of topographic familiarity. An environmental agnosia. Arch Neurol. 1986;43:132–6.

    Article  CAS  PubMed  Google Scholar 

  58. Cavina-Pratesi C, Kentridge RW, Heywood CA, Milner AD. Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia. Cereb Cortex. 2010;20(10):2319–32.

    Article  CAS  PubMed  Google Scholar 

  59. Ffytche DH, Lappin JM, Philpot M. Visual command hallucinations in a patient with pure alexia. J Neurol Neurosurg Psychiatry. 2004;75(1):80–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamagata B, Kobayashi H, Yamamoto H, Mimura M. Visual text hallucinations of thoughts in an alexic woman. J Neurol Sci. 2014;339(1-2):226–8.

    Article  PubMed  Google Scholar 

  61. Cummings JL, Gittinger Jr JW. Central dazzle. A thalamic syndrome? Arch Neurol. 1981;38(6):372–4.

    Article  CAS  PubMed  Google Scholar 

  62. Du-Pasquier RA, Genoud D, Safran AB, Landis T. Monocular central dazzle after thalamic infarcts. J Neuroophthalmol. 2000;20(2):97–9.

    Article  CAS  PubMed  Google Scholar 

  63. Safran AB, Sanda N. Color synesthesia. Insight into perception, emotion and consciousness. Curr Opin Neurol. 2015;28:36–44.

    Article  PubMed  Google Scholar 

  64. Ptak R, Lazeyras F, Di Pietro M, Schnider A, Simon SR. Visual object agnosia is associated with a breakdown of object selective responses in the lateral occipital cortex. Neuropsychologia. 2014;60:10–20.

    Article  PubMed  Google Scholar 

  65. Montalvo MJ, Kahn MA. Clinicoradiological correlation of macropsia due to acute stroke: a case report and review of the literature. Case Rep Neurol Med. 2014;2014:272084. doi:10.1155/2014/272084.

    PubMed  PubMed Central  Google Scholar 

  66. Laudate TM, Nelson AP. “Macropsia”, in encyclopedia of clinical neuropsychology. New York, NY: Springer; 2011. p. 1506.

    Book  Google Scholar 

  67. Cohen L, Gray F, Meyrignac C, Dehaene S, Degos JD. Selective deficit of visual size perception: two cases of hemimicropsia. J Neurol Neurosurg Psychiatry. 1994;57:73e8.

    Google Scholar 

  68. Ffytche DH, Howard RJ. The perceptual consequences of visual loss: positive pathologies of vision. Brain. 1999;122:1247–60.

    Article  PubMed  Google Scholar 

  69. Podoll K, Robinson D. Recurrent Lilliputian hallucinations as visual aura symptom in migraine. Cephalalgia. 2001;21(10):990–2.

    Article  CAS  PubMed  Google Scholar 

  70. Uchiyama M, Nishio Y, Yokoi K, Hirayama K, Imamura T, Shimomura T, et al. Pareidolias: complex visual illusions in dementia with Lewy bodies. Brain. 2012;135:2458–69.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Uchiyama M, Nishio Y, Yokoi K, Hosokai Y, Takeda A, Mori E. Pareidolia in Parkinson's disease without dementia: a positron emission tomography study. Parkinsonism Relat Disord. 2015;21(6):603–9.

    Article  PubMed  Google Scholar 

  72. Michel F, Henaff MA. Seeing without the occipito-parietal cortex: simultanagnosia as a shrinkage of the attentional visual field. Behav Neurol. 2004;15:3–13.

    Article  PubMed  Google Scholar 

  73. Thomas C, Kveraga K, Huberle E, Karnath HO, Bar M. Enabling global processing in simultanagnosia by psychophysical biasing of visual pathways. Brain. 2012;135:1578–85.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hoffmann M, Keiseb J, Moodley J, Corr P. Appropriate neurological evaluation and multimodality magnetic resonance imaging in eclampsia. Acta Neurol Scand. 2002;106(3):159–67.

    Article  CAS  PubMed  Google Scholar 

  75. Rizzo M, Robin DA. Simultanagnosia: a defect of sustained attention yields insights on visual information processing. Neurology. 1990;40:447–55.

    Article  CAS  PubMed  Google Scholar 

  76. Dalrymple KA, Barton JJ, Kingstone A. A world unglued: simultanagnosia as a spatial restriction of attention. Front Hum Neurosci. 2013;7:145. doi:10.3389/fnhum.2013.00145. eCollection 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Naidu K, Moodley J, Corr P, Hoffmann M. Single photon emission and cerebral computerised tomographic scan and transcranial Doppler sonographic findings in eclampsia. Br J Obstet Gynaecol. 1997;104(10):1165–72.

    Article  CAS  PubMed  Google Scholar 

  78. Zihl J, Heywood CA. The contribution of LM to the neuroscience of movement vision. Front Integr Neurosci. 2015;9:6. doi:10.3389/fnint.2015.00006. eCollection 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sakurai K, Kurita T, Takeda Y, Shiraishi H, Kusumi I. Akinetopsia as epileptic seizure. Epilepsy Behav Case Rep. 2013;20:74–6. doi:10.1016/j.ebcr.2013.04.002. eCollection 2013.

    Article  Google Scholar 

  80. Tsai PH, Mendez MF. Akinetopsia in the posterior cortical variant of Alzheimer disease. Neurology. 2009;73(9):731–2. doi:10.1212/WNL.0b013e3181b59c07.

    Article  PubMed  Google Scholar 

  81. Ovsiew F. The Zeitraffer phenomenon, akinetopsia, and the visual perception of speed of motion: a case report. Neurocase. 2014;20(3):269–72. doi:10.1080/13554794.2013.770877.

    Article  PubMed  Google Scholar 

  82. Wood IC, Tomlinson A. Stereopsis measured by random-dot patterns--a new clinical test. Br J Physiol Opt. 1976;31(4):22–5.

    CAS  PubMed  Google Scholar 

  83. Gersztenkorn D, Lee AG. Palinopsia revamped: a systematic review of the literature. Surv Ophthalmol. 2015;60(1):1–35.

    Article  PubMed  Google Scholar 

  84. Critchley M. Types of visual perseveration: ‘palinopsia’ and ‘illusory visual spread.’. Brain. 1951;74:267–99.

    Article  CAS  PubMed  Google Scholar 

  85. Santhouse AM, Howard RJ, Ffytche DH. Visual hallucinatory syndromes and the anatomy of the visual brain. Brain. 2000;123:2055–64.

    Article  PubMed  Google Scholar 

  86. Lopez JR, Adornato BT, Hoyt WF. ‘Entomopia’: a remarkable case of cerebral polyopia. Neurology. 1993;43:2145.

    Article  CAS  PubMed  Google Scholar 

  87. River Y, Ben Hur T, Steiner I. Reversal of vision metamorphopsia: clinical andanatomical characteristics. Arch Neurol. 1998;55:1362–8.

    Article  CAS  PubMed  Google Scholar 

  88. Girkin CA, Miller NR. Central disorders of vision in humans. Surv Ophthalmol. 2001;45:379–405.

    Article  CAS  PubMed  Google Scholar 

  89. Mattingley JB, Bradshaw JL. Can tactile neglect occur at an intra-limb level? Vibrotactile reaction times in patients with right hemisphere damage. Behav Neurol. 1994;7(2):67–77.

    Article  CAS  PubMed  Google Scholar 

  90. Ardila A, Botero M, Gomez J. Palinopsia and visual allesthesia. Int J Neurosci. 1987;32:775–82.

    Article  CAS  PubMed  Google Scholar 

  91. Brugger P, Regard M. Illusory reduplication of one’s own body: phenomenology and classification of autoscopic phenomena. Cogn Neuropsychol. 1997;2:19–38.

    Article  CAS  Google Scholar 

  92. Anzellotti F, Onofrj V, Maruotti V, Ricciardi L, Franciotti R, Bonanni L, et al. Autoscopic phenomena: case report and review of literature. Behav Brain Funct. 2011;7(1):2. doi:10.1186/1744-9081-7-2.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Blanke O, Landis T, Spinelli L, Seeck M. Out-of-body experience and autoscopy of neurological origin. Brain. 2004;127:243–58.

    Article  PubMed  Google Scholar 

  94. Whiteside TC, Graybiel A, Niven JI. Visual illusions of movement. Brain. 1965;88:193–210.

    Article  CAS  PubMed  Google Scholar 

  95. Kolev OI. Visual hallucinations evoked by caloric vestibular stimulation in normal humans. J Vestib Res. 1995;5:19–23.

    Article  CAS  PubMed  Google Scholar 

  96. Uchida H, Suzuki T, Tanaka KF, Watanabe K, Yagi G, Kashima H. Recurrent episodes of perceptual alteration in patients treated with antipsychotic agents. J Clin Psychopharmacol. 2003;23:496–9.

    Article  PubMed  Google Scholar 

  97. Fftytche D, Blom JD, Catani M. Disorders of visual perception. J Neurol Neurosurg Psychiatry. 2010;81:1280–7.

    Article  Google Scholar 

  98. von Cramon DY, Kerkhoff G. On the cerebral organization of elementary visuospatial perception. In: Gulyas B, Ottoson D, Roland P, editors. Functional organisation of the human visual cortex. Oxford: Pergamon; 1993. p. 211–31.

    Chapter  Google Scholar 

  99. Craver-Lemley C, Bornstein RF, Alexander DN, Barrett AM. Imagery interference diminishes in older adults: age-related differences in the magnitude of the Perky effect. Imagin Cogn Pers. 2009;29(4):307–22.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Segal SJ, Gordon PE. The Perky effect revisited: blocking of visual signals by imagery. Percept Mot Skills. 1969;28:791–7.

    Article  CAS  PubMed  Google Scholar 

  101. Gray CR, Gummerman K. The enigmatic eidetic image: a critical examination of methods, data, and theories. Psychol Bull. 1975;82:383–407.

    Article  CAS  PubMed  Google Scholar 

  102. Brang D, Ramachandran VS. Visual field heterogeneity, laterality, and eidetic imagery in synesthesia. Neurocase. 2010;16(2):169–74. doi:10.1080/13554790903339645.

    Article  PubMed  Google Scholar 

  103. Battelli L, Pascual-Leone A, Cavanagh P. The ‘when’ pathway of the right parietal lobe. Trends Cogn Sci. 2007;11:204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    Article  CAS  PubMed  Google Scholar 

  105. Nieder A, Diester I, Tudusciuc O. Temporal and spatial enumeration processes in the primate parietal cortex. Science. 2006;313:1431–5.

    Article  CAS  PubMed  Google Scholar 

  106. Bonnet L, Comte A, Tatu L, Millot JL, Moulin T, Medeiros de Bustos E. The role of the amygdala in the perception of positive emotions: an "intensity detector". Front Behav Neurosci. 2015;9:178. doi:10.3389/fnbeh.2015.00178. eCollection 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Benarroch EE. The amygdala: functional organization and involvement in neurologic disorders. Neurology. 2015;84(3):313–24.

    Article  PubMed  Google Scholar 

  108. Critchley M. Metamorphopsia of central origin. Trans Ophthalmol Soc U K. 1949;69:111–21.

    Google Scholar 

  109. Critchley M. The parietal lobes. New York, NY: Hafner; 1953.

    Google Scholar 

  110. Ellis HD, Young AW, Quayle AH, De Pauw KW. Reduced autonomic responses to faces in Capgras delusion. Proc Biol Sci. 1997;264:1085–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bischof M, Bassetti CL. Total dream loss: a distinct neuropsychological dysfunction after bilateral PCA stroke. Ann Neurol. 2004;56:583–6.

    Article  PubMed  Google Scholar 

  112. Peña-Casanova J, Roig-Rovira T, Bermudez A, Tolosa-Sarro E. Optic aphasia, optic apraxia, and loss of dreaming. Brain Lang. 1985;26(1):63–71.

    Article  PubMed  Google Scholar 

  113. Santos-Bueso E, Serrador-Garcia M, Porta-Etessam J, Rodríguez-Gómez O, Martínez-de-la-Casa JM, García-Feijoo J, et al. Charles Bonnet syndrome. A 45 case series. Rev Neurol. 2015;60:337–40.

    PubMed  Google Scholar 

  114. Benke T. Peduncular hallucinosis – a syndrome of impaired reality monitoring. J Neurol. 2006;253:1561–71.

    Article  PubMed  Google Scholar 

  115. Lezak MD, Howieson DB, Bigler ED, Tranel T, editors. Neuropsychological assessment. Oxford: Oxford University Press; 2012.

    Google Scholar 

  116. Warrington E, James M. VOSP. Harcourt assessment. London: The Psychological Corporation. The Thames Valley Test Company; 1991.

    Google Scholar 

  117. Vidal Y, Hoffmann M. Improvement of Astatikopsia (Riddoch's phenomenon) after correction of vertebral stenoses with angioplasty. Neurol Int. 2012;4(1), e1. doi:10.4081/ni.2012.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Marra A, Vargas M, Striano P, Del Guercio L, Buonanno P, Servillo G. Posterior reversible encephalopathy syndrome: the endothelial hypotheses. Med Hypotheses. 2014;82(5):619–22.

    Article  CAS  PubMed  Google Scholar 

  119. Call GK, Fleming MC, Sealfon S, Levine H, Kistler JP, Fisher CM. Reversible cerebral segmental vasoconstriction. Stroke. 1988;19(9):1159–70.

    Article  CAS  PubMed  Google Scholar 

  120. Fugate JE, Rabinstein AA. Posterior reversible encephalopathy syndrome: clinical and radiological manifestations, pathophysiology, and outstanding questions. Lancet Neurol. 2015;13:S1474–4422.

    Google Scholar 

  121. Caroppo P, Belin C, Grabli D, Maillet D, De Septenville A, Migliaccio R, et al. Posterior cortical atrophy as an extreme phenotype of GRN mutations. JAMA Neurol. 2015;72:224–8.

    Article  PubMed  Google Scholar 

  122. Nesse R. The smoke detector principle. Ann N Y Acad Sci. 2006. doi:10.1111/j.1749-6632.2001.tb03472.

    Google Scholar 

  123. Koenen KC, Amstadter AB, Nugent NR. Gene-environment interaction in posttraumatic stress disorder: an update. J Trauma Stress. 2009;22(5):416–26.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Raskind MA, Peskind ER, Kanter ED, Petrie EC, Radant A, Thompson CE, et al. Reduction of nightmares and other PTSD symptoms in combat veterans by prazosin: a placebo-controlled study. Am J Psychiatry. 2003;160:371–3.

    Article  PubMed  Google Scholar 

  125. Tang Y-Y, Lu Q, Gen X, Stein EA, Yang Y, Posner MI. Short-term meditation induces white matter changes in the anterior cingulated. Proc Natl Acad Sci U S A. 2010;107:15649–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mirzaei S, Knoll P, Koehn H, Bruecke T. Assessment of diffuse Lewy body disease by 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET). BMC Nucl Med. 2003;3(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  127. De Meyer G, Shapiro F, Vanderstichele H. Diagnosis independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol. 2010;67:949–56.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ballanger B, Strafella AP, van Eimeren T. Serotonin 2 a receptors and visual hallucinations in Parkinsons disease. Arch Neurol. 2010;67:416–21.

    Article  PubMed  Google Scholar 

  129. Lim SM, Katsifis A, Villemagne V, Best R, Jones G, Saling M, et al. The 18F FDG PET cingulate island sign and comparison to 123I beta CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med. 2009;50:1638–45.

    Article  CAS  PubMed  Google Scholar 

  130. Loes DJ, Peters C, Krivit W. Globoid cell leukodystrophy: distinguishing early-onset from late-onset disease using a brain MR imaging scoring method. AJNR Am J Neuroradiol. 1999;20(2):316–23.

    CAS  PubMed  Google Scholar 

  131. Kim TS, Kim IO, Kim WS, Choi YS, Lee JY, Kim OW, et al. MR of childhood metachromatic leukodystrophy. AJNR Am J Neuroradiol. 1997;18(4):733–8.

    CAS  PubMed  Google Scholar 

  132. Lionnet C, Carra C, Ayrignac X, Levade T, Gayraud D, Castelnovo G, et al. Cerebrotendinous xanthomatosis: a multicentric retrospective study of 15 adults, clinical and paraclinical typical and atypical aspects. Rev Neurol (Paris). 2014;170(6–7):445–53.

    Article  CAS  Google Scholar 

  133. Corlobé A, Taithe F, Clavelou P, Pierre E, Carra-Dallière C, Ayrignac X, et al. A novel autosomal dominant leukodystrophy with specific MRI pattern. J Neurol. 2015;262(4):988–91.

    Article  PubMed  CAS  Google Scholar 

  134. Okuda B, Tanaka H, Tachibana H, Iwamoto Y, Takeda M, Kawabata K, et al. Visual form agnosia in multiple sclerosis. Acta Neurol Scand. 1996;94(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  135. Benson DF, Greenberg JP. Visual form agnosia. Arch Neurol. 1969;20:82–9.

    Article  CAS  PubMed  Google Scholar 

  136. Milner AD, Perrett DI, Johnston RS, Benson PJ, Jordan TR, Heeley DW, et al. Perception and action in “visual form agnosia”. Brain. 1991;114:405–28.

    Article  PubMed  Google Scholar 

  137. Whitwell RL, Milner AD, Goodale MA. The two visual systems hypothesis: new challenges and insights from visual form agnosic patient DF. Front Neurol. 2014;5:255.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Bridge H, Thomas OM, Minini L, Cavina-Pratesi C, Milner AD, Parker AJ. Structural and functional changes across the visual cortex of a patient with visual form agnosia. J Neurosci. 2013;33(31):12779–91.

    Article  CAS  PubMed  Google Scholar 

  139. Landis T, Graves R, Benson F, Hebben N. Visual recognition through kinesthetic mediation. Psychol Med. 1982;12:5150531.

    Article  Google Scholar 

  140. Agnetti V, Carreras M, Pinna L, Rosati G. Ictal prosopagnosia and epileptogenic damage of the dominant hemisphere. A case history. Cortex. 1978;14(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  141. Mesad S, Laff R, Devinsky O. Transient postoperative prosopagnosia. Epilepsy Behav. 2003;4(5):567–70.

    Article  PubMed  Google Scholar 

  142. Eriksson K, Kylliäinen A, Hirvonen K, Nieminen P, Koivikko M. Visual agnosia in a child with non-lesional occipito-temporal CSWS. Brain Dev. 2003;25(4):262–7.

    Article  PubMed  Google Scholar 

  143. Smith WS, Mindelzun RE, Miller B. Simultanagnosia through the eyes of an artist. Neurology. 2003;60(11):1832–4.

    Article  PubMed  Google Scholar 

  144. Mangla R, Kolar B, Almast J, Ekholm SE. Border zone infarcts: pathophysiologic and imaging characteristics. Radiographics. 2011;31(5):1201–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoffmann, M. (2016). Vision: Elementary and Complex Visual Processing. In: Cognitive, Conative and Behavioral Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-33181-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33181-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33179-9

  • Online ISBN: 978-3-319-33181-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics