Skip to main content

Treatment Planning for Electrochemotherapy and Irreversible Electroporation of Deep-Seated Tumors

  • Reference work entry
  • First Online:
Handbook of Electroporation

Abstract

Electrochemotherapy and irreversible electroporation can be used to treat deep-seated tumors. Key to treatment success is ensuring that the entirety of the target tumor is covered with electric fields of sufficient strength during the treatment. Treatment planning using numerical methods has long been established in radiotherapy, and this chapter presents the necessary tools to realize a similar treatment planning framework also for electrochemotherapy and irreversible electroporation. Treatment planning consists of identifying the target tumor and surrounding tissues on tomographic medical images. This reconstruction can be used to build a numerical model of the region of interest with by assigning correct conductivities to each tissue in the treatment zone. Using the finite element method, electric fields for a given electrode configuration can be determined. By coupling the numerical model of electroporation with appropriate optimization algorithms, the voltage to be delivered to each electrode pair can be determined and the positions of electrodes can be adjusted to ensure successful coverage of the target volume. Possible approaches to execute the treatment according to the prepared treatment plan are also discussed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alnæs M, Blechta J, Hake J, et al (2015) The FEniCS project version 1.5. doi:10.11588/ans.2015.100.20553

  • Aström M, Zrinzo LU, Tisch S et al (2009) Method for patient-specific finite element modeling and simulation of deep brain stimulation. Med Biol Eng Comput 47:21–28. doi:10.1007/s11517-008-0411-2

    Article  Google Scholar 

  • Bianchi G, Campanacci L, Ronchetti M, Donati D (2016) Electrochemotherapy in the treatment of bone metastases: a phase II trial. World J Surg 40:3088–3094. doi:10.1007/s00268-016-3627-6

    Article  Google Scholar 

  • Bujold A, Craig T, Jaffray D, Dawson LA (2012) Image-guided radiotherapy: has it influenced patient outcomes? Semin Radiat Oncol 22:50–61. doi:10.1016/j.semradonc.2011.09.001

    Article  Google Scholar 

  • Corovic S, Lackovic I, Sustaric P et al (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online 12:16. doi:10.1186/1475-925X-12-16

    Article  Google Scholar 

  • Davalos R, Mir L, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231. doi:10.1007/s10439-005-8981-8

    Article  Google Scholar 

  • Denzi A, Strigari L, Di Filippo F et al (2015) Modeling the positioning of single needle electrodes for the treatment of breast cancer in a clinical case. Biomed Eng Online 14(Suppl 3):S1. doi:10.1186/1475-925X-14-S3-S1

    Article  Google Scholar 

  • Edhemovic I, Brecelj E, Gasljevic G et al (2014) Intraoperative electrochemotherapy of colorectal liver metastases. J Surg Oncol. doi:10.1002/jso.23625

    Google Scholar 

  • Gabriel C, Peyman A, Grant E (2009) Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol 54:4863–4878. doi:10.1088/0031-9155/54/16/002

    Article  Google Scholar 

  • Gabriel S, Lau R, Gabriel C (1996) The dielectric properties of biological tissues: II. measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  Google Scholar 

  • Garcia PA, Davalos RV, Miklavcic D (2014) A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One 9:e103083. doi:10.1371/journal.pone.0103083

    Article  Google Scholar 

  • Garcia PA, Rossmeisl JH Jr, Neal RE 2nd et al (2011) A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed Eng Online 10:34. doi:10.1186/1475-925X-10-34

    Article  Google Scholar 

  • Gasbarrini A, Campos WK, Campanacci L, Boriani S (2015) Electrochemotherapy to metastatic spinal melanoma: a novel treatment of spinal metastasis? Spine 40:E1340–E1346. doi:10.1097/BRS.0000000000001125

    Article  Google Scholar 

  • Haemmerich D, Schutt D, Wright A et al (2009) Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation. Physiol Meas 30:459–466. doi:10.1088/0967-3334/30/5/003

    Article  Google Scholar 

  • Hecht F (2012) New development in freefem++. J Numer Math 20(3–4):251–256. doi:10.1515/jnum-2012-0013

    MathSciNet  MATH  Google Scholar 

  • Ivorra A (2010) Tissue electroporation as a bioelectric phenomenon: basic concepts. In: Rubinsky B (ed) Irreversible Electroporation. Springer, Berlin/Heidelberg, pp 23–61

    Chapter  Google Scholar 

  • Ivorra A, Al-Sakere B, Rubinsky B, Mir L (2009) In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys Med Biol 54:5949–5963. doi:10.1088/0031-9155/54/19/019

    Article  Google Scholar 

  • Jaffray D, Kupelian P, Djemil T, Macklis RM (2007) Review of image-guided radiation therapy. Expert Rev Anticancer Ther 7:89–103. doi:10.1586/14737140.7.1.89

    Article  Google Scholar 

  • Jiang C, Davalos R, Bischof J (2015) A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 62:4–20. doi:10.1109/TBME.2014.2367543

    Article  Google Scholar 

  • Kos B, Voigt P, Miklavcic D, Moche M (2015) Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE). Radiol Oncol 49:234–241. doi:10.1515/raon-2015-0031

    Article  Google Scholar 

  • Kotnik T, Kramar P, Pucihar G et al (2012) Cell membrane electroporation – part 1: the phenomenon. IEEE Electr Insul Mag 28:14–23

    Article  Google Scholar 

  • Marčan M, Pavliha D, Kos B et al (2015) Web-based tool for visualization of electric field distribution in deep-seated body structures and planning of electroporation-based treatments. Biomed Eng Online 14(Suppl 3):S4. doi:10.1186/1475-925X-14-S3-S4

    Article  Google Scholar 

  • Martin RCG (2013) Irreversible electroporation of locally advanced pancreatic head adenocarcinoma. J Gastrointest Surg 17:1850–1856. doi:10.1007/s11605-013-2309-z

    Article  Google Scholar 

  • Miklavčič D, Mali B, Kos B et al (2014) Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 13:29. doi:10.1186/1475-925X-13-29

    Article  Google Scholar 

  • Mir LM, Orlowski S, Belehradek J, Paoletti C (1991) Electrochemotherapy potentiation of antitumor effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72

    Article  Google Scholar 

  • Narayanan G, Doshi MH (2016) Irreversible electroporation (IRE) in renal tumors. Curr Urol Rep 17:15. doi:10.1007/s11934-015-0571-1

    Article  Google Scholar 

  • Onik G, Mikus P, Rubinsky B (2007) Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat 6:295–300

    Article  Google Scholar 

  • O’Rourke AP, Lazebnik M, Bertram JM et al (2007) Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys Med Biol 52:4707–4719. doi:10.1088/0031-9155/52/15/022

    Article  Google Scholar 

  • Pavliha D, Kos B, Županič A et al (2012) Patient-specific treatment planning of electrochemotherapy: procedure design and possible pitfalls. Bioelectrochemistry 87:265–273. doi:10.1016/j.bioelechem.2012.01.007

    Article  Google Scholar 

  • Peyman A, Kos B, Djokić M et al (2015) Variation in dielectric properties due to pathological changes in human liver. Bioelectromagnetics 36:603–612. doi:10.1002/bem.21939

    Article  Google Scholar 

  • Pucihar G, Krmelj J, Reberšek M et al (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58:3279–3288. doi:10.1109/TBME.2011.2167232

    Article  Google Scholar 

  • Sel D, Lebar A, Miklavcic D (2007) Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54:773–781. doi:10.1109/TBME.2006.889196

    Article  Google Scholar 

  • Thomson KR, Cheung W, Ellis SJ et al (2011) Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol 22:611–621. doi:10.1016/j.jvir.2010.12.014

    Article  Google Scholar 

  • Zupanic A, Kos B, Miklavcic D (2012) Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 57:5425–5440. doi:10.1088/0031-9155/57/17/5425

    Article  Google Scholar 

  • Županič A, Miklavčič D (2010) Optimization and numerical modeling in irreversible electroporation treatment planning. In: Rubinsky B (ed) Irreversible Electroporation. Springer, Berlin/ Heidelberg, pp 203–222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor Kos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kos, B. (2017). Treatment Planning for Electrochemotherapy and Irreversible Electroporation of Deep-Seated Tumors. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-32886-7_2

Download citation

Publish with us

Policies and ethics