Skip to main content

Relationship Between Al\(_{2}\)O\(_{3}\) Bulk and Interface Properties

  • Chapter
  • First Online:
New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface

Part of the book series: Springer Theses ((Springer Theses))

  • 664 Accesses

Abstract

Surface passivation is directly related to the chemical structure and composition of the silicon-insulator interface. However, the chemical properties of the interface, as an essentially two-dimensional feature, are not easily measured, still less those of the various electronic states, which occupy only a small fraction of interfacial sites.

If you want to understand function, study structure.

—Francis Crick

What Mad Pursuit: A Personal View of Scientific Discovery

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoex, B., Gielis, J.J.H., van de Sanden, M.C.M., Kessels, W.M.M.: On the c-Si surface passivation mechanism by the negative-charge-dielectric Al\(_{2}\)O\(_{3}\). J. Appl. Phys. 104, 113703 (2008)

    Article  Google Scholar 

  2. Benick, J., Richter, A., Li, A., Grant, N.E., McIntosh, K.R., Ren, Y., Weber, K.J., Hermle, M., Glunz, S.W.: Effect of a post-deposition anneal on Al\(_{2}\)O\(_{3}\)/Si interface properties. In: Proceedings of 35th IEEE Photovoltaic Specialists Conference, pp. 000 891–000 896. Honolulu, Hawaii (2010)

    Google Scholar 

  3. Richter, A., Henneck, S., Benick, J., Hörteis, M., Hermle, M., Glunz, S.W.: Firing stable Al\(_{2}\)O\(_{3}\)/SiN\(_{x}\) layer stack passivation for the front side boron emitter of n-type silicon solar cells. In: Proceedings of 25th European Photovoltaic Solar Energy Conference, pp. 1453–1459. Valencia, Spain (2010)

    Google Scholar 

  4. Li, T.-T.A.: Surface passivation of crystalline silicon by sputtered aluminium oxide. Ph.D. thesis, The Australian National University (2010)

    Google Scholar 

  5. Li, T.-T.A., Cuevas, A.: Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide. Prog. Photovolt.: Res. Appl. 19, 320–325 (2011)

    Google Scholar 

  6. Li, T.-T.A., Ruffell, S., Tucci, M., Mansoulié, Y., Samundsett, C., Iullis, S.D., Serenelli, L., Cuevas, A.: Inuence of oxygen on the sputtering of aluminum oxide for the surface passivation of crystalline silicon. Solar Energy Mater. Solar Cells 95, 69–72 (2011)

    Article  Google Scholar 

  7. Zhang, X., Cuevas, A.: Plasma hydrogenated, reactively sputtered aluminium oxide for silicon surface passivation. Phys. Status Solidi RRL 7, 619–622 (2013)

    Article  Google Scholar 

  8. Richter, A., Benick, J., Hermle, M., Glunz, S.W.: Reaction kinetics during the thermal activation of the silicon surface passivation with atomic layer deposited Al\(_{2}\)O\(_{3}\). Appl. Phys. Lett. 104, 061606 (2014)

    Article  Google Scholar 

  9. Kühnhold, S., Saint-Cast, P., Kae, B., Hofmann, M., Colonna, F., Zacharias, M.: High-temperature degradation in plasma-enhanced chemical vapor deposition Al\(_{2}\)O\(_{3}\) surface passivation layers on crystalline silicon. J. Appl. Phys. 116, 054507 (2014)

    Article  Google Scholar 

  10. Colomban, P.: Structure of oxide gels and glasses by infrared and Raman scattering Part 1: alumina. J. Mater. Sci. 24, 3002–3010 (1989)

    Article  Google Scholar 

  11. Kim, Y.-C., Park, H.-H., Chun, J.S., Lee, W.-J.: Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Films 237, 57–65 (1994)

    Article  Google Scholar 

  12. Dillon, A.C., Ott, A.W., Way, J.D., George, S.M.: Surface chemistry of Al\(_{2}\)O\(_{3}\) deposition using Al(CH\(_{3}\))\(_{3}\) and H\(_{2}\)O in a binary reaction sequence. Surf. Sci. 322, 230–242 (1995)

    Article  Google Scholar 

  13. Chu, P.M., Guenther, F.R., Rhoderick, G.C., Lafferty, W.J.: The NIST quantitative infrared database. J. Res. Nat. Inst. Stand. Technol. 104, 59–81 (1999)

    Article  Google Scholar 

  14. Goldstein, D.N., McCormick, J.A., George, S.M.: Al\(_{2}\)O\(_{3}\) atomic layer deposition with trimethylaluminum and ozone studied by in situ transmission FTIR spectroscopy and quadrupole mass spectrometry. J. Phys. Chem. C 112, 19 530–19 539 (2008)

    Google Scholar 

  15. Langereis, E., Keijmel, J., van de Sanden, M.C.M., Kessels, W.M.M.: Surface chemistry of plasma-assisted atomic layer deposition of Al\(_{2}\)O\(_{3}\) studied by infrared spectroscopy. Appl. Phys. Lett. 92, 231904 (2008)

    Article  Google Scholar 

  16. Kääriänen, T.O., Cameron, D.C.: Plasma-assisted atomic layer deposition of Al\(_{2}\)O\(_{3}\) at room temperature. Plasma Proces. Polym. 6, S237–S241 (2009)

    Article  Google Scholar 

  17. Devine, R.A.B.: Structural nature of the Si/SiO\(_{2}\) interface through infrared spectroscopy. Appl. Phys. Lett. 68, 3108–3110 (1996)

    Article  Google Scholar 

  18. Queeney, K.T., Weldon, M.K., Chang, J.P., Chabal, Y.J., Gurevich, A.B., Sapjeta, J., Opila, R.L.: Infrared spectroscopic analysis of the Si/SiO\(_{2}\) interface structure of thermally oxidized silicon. J. Appl. Phys. 87, 1322–1330 (2000)

    Article  Google Scholar 

  19. Tarte, P.: Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO\(_{4}\) tetrahedra and AlO\(_{6}\) octahedra. Spectrochim. Acta 23A, 2127–2143 (1967)

    Article  Google Scholar 

  20. Priya, G.K., Padmaja, P., Warrier, K.G.K., Damodaran, A.D., Aruldhas, G.: Dehydroxylation and high temperature phase formation in solgel boehmite characterized by Fourier transform infrared spectroscopy. J. Mater. Sci. Lett. 16, 1584–1587 (1997)

    Article  Google Scholar 

  21. Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J.B., Berthet, P., Huntz, A.M., Roy, P., Tétot, R.: Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J. Solid State Chem. 182, 1171–1176 (2009)

    Article  Google Scholar 

  22. Voll, D., Angerer, P., Beran, A., Schneider, H.: A new assignment of IR vibrational modes in mullite. Vib. Spectrosc. 30, 237–243 (2002)

    Article  Google Scholar 

  23. MacKenzie, K.J.D.: Infrared frequency calculations for ideal mullite (3Al\(_{2}\)O\(_{3}\bullet \)SiO\(_{2}\)). J. Am. Ceram. Soc. 55, 68–71 (1972)

    Article  Google Scholar 

  24. Iishi, K., Salje, E., Werneke, C.: Phonon spectra and rigid-ion model calculations on andalusite. Phys. Chem. Miner. 4, 173–188 (1979)

    Article  Google Scholar 

  25. Kieffer, S.W.: Thermodynamics and lattice vibrations of minerals: vibrational characteristics of silicates. Rev. Geophys. Space Phys. 17, 20–34 (1979)

    Article  Google Scholar 

  26. Winkler, B., Buehrer, W.: Lattice dynamics of andalusite: prediction and experiment. Phys. Chem. Miner. 17, 453–461 (1990)

    Article  Google Scholar 

  27. McMillan, P., Piriou, B.: The structures and vibrational spectra of crystals and glasses in the silica-alumina system. J. Non-Cryst. Solids 53, 279–298 (1982)

    Article  Google Scholar 

  28. Poe, B.T., McMillan, P.F., Angell, C.A., Sato, R.K.: Al and Si coordination in SiO\(_{2}\)Al\(_{2}\)O\(_{3}\) glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem. Geol. 96, 333–349 (1992)

    Article  Google Scholar 

  29. Gutiérrez, G., Johansson, B.: Molecular dynamics study of structural properties of amorphous Al2O3. Phys. Rev. B 65, 104202 (2002)

    Article  Google Scholar 

  30. Hoang, V.V., Oh, S.K.: Simulation of structural properties and structural transformation of amorphous Al2O3. Phys. B: Condens. Matter 352, 73–85 (2004)

    Article  Google Scholar 

  31. Prokhorskii, M., Fofanov, A., Aleshina, L., Nikitina, E.: Structure of amorphous oxide Al\(_{2}\)O\(_{3}\): Results of a molecular-dynamics experiment. Cryst. Rep. 49, 631–634 (2004)

    Article  Google Scholar 

  32. Adiga, S.P., Zapol, P., Curtiss, L.A.: Atomistic simulations of amorphous alumina surfaces. Phys. Rev. B 74, 064204 (2006)

    Article  Google Scholar 

  33. Adiga, S.P., Zapol, P., Curtiss, L.A.: Structure and morphology of hydroxylated amorphous alumina surfaces. J. Phys. Chem. C 111, 7422–7429 (2007)

    Article  Google Scholar 

  34. Lizárraga, R., Holmström, E., Parker, S.C., Arrouvel, C.: Structural characterization of amorphous alumina and its polymorphs from firstprinciples XPS and NMR calculations. Phys. Rev. B 83, 094201 (2011)

    Article  Google Scholar 

  35. Davis, S., Gutiérrez, G.: Structural, elastic, vibrational and electronic properties of amorphous Al2O3 from ab initio calculations. J. Phys.: Condens. Matter 23, 495401 (2011)

    Google Scholar 

  36. Stoch, L., Åšsroda, M.: Infrared spectroscopy in the investigation of oxide glasses structure. J. Mol. Struct. 511–512, 77–84 (1999)

    Article  Google Scholar 

  37. Aguilar-Frutis, M., Garcia, M., Falcony, C., Plesch, G., Jimenez-Sandoval, S.: A study of the dielectric characteristics of aluminum oxide thinfilms deposited by spray pyrolysis from Al(acac)\(_{3}\). Thin Solid Films 389, 200–206 (2001)

    Article  Google Scholar 

  38. Stegmann, M.C., Vivien, D., Mazieres, C.: Etude des modes de vibration infrarouge dans les oxyhydroxides d’aluminium boehmite et diaspore. Spectrochim. Acta 29A, 1653–1663 (1973)

    Article  Google Scholar 

  39. Levin, I., Brandon, D.: Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc. 81, 1995–2012 (1998)

    Article  Google Scholar 

  40. Catherine, Y., Talebian, A.: Plasma deposition of aluminum oxidefilms. J. Electron. Mater. 17, 127–134 (1988)

    Article  Google Scholar 

  41. Haanappel, V.A.C., van Corbach, H.D., Fransen, T., Gellings, P.J.: Properties of alumina films prepared by atmospheric pressure metalorganic chemical vapour deposition. Surf. Coat. Technol. 63, 145–153 (1994)

    Article  Google Scholar 

  42. Haanappel, V.A.C., van Corbach, H.D., Fransen, T., Gellings, P.J.: Properties of alumina films prepared by low-pressure metal-organic chemical vapour deposition. Surf. Coat. Technol. 72, 13–22 (1995)

    Article  Google Scholar 

  43. Haanappel, V.A.C., Rem, J.B., van Corbach, H.D., Fransen, T., Gellings, P.J.: Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in the presence of small amounts of water. Surf. Coat. Technol. 72, 1–12 (1995)

    Article  Google Scholar 

  44. Rinaldi, R., Schuchardt, U.: On the paradox of transition metal-free alumina-catalyzed epoxidation with aqueous hydrogen peroxide. J. Catal. 236, 335–345 (2005)

    Article  Google Scholar 

  45. Agostinelli, G., Delabie, A., Vitanov, P., Alexieva, Z., Dekkers, H.F.W., Wolf, S.D., Beaucarne, G.: Very low surface recombination velocities on ptype silicon wafers passivated with a dielectric with fixed negative charge. Solar Energy Mater. Solar Cells 90, 3438–3443 (2006)

    Article  Google Scholar 

  46. Black, L.E., McIntosh, K.R.: Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al\(_{2}\)O\(_{3}\). Appl. Phys. Lett. 100, 202107 (2012)

    Article  Google Scholar 

  47. Murase, K.: Dielectric constant of silicon dioxide deposited by atmosphericpressure chemical vapor deposition using tetraethylorthosilicate and ozone. Jpn. J. Appl. Phys. 33, 1385–1389 (1994)

    Article  Google Scholar 

  48. Momida, H., Hamada, T., Takagi, Y., Yamamoto, T., Uda, T., Ohno, T.: Theoretical study on dielectric response of amorphous alumina. Phys. Rev. B 73, 054108 (2006)

    Article  Google Scholar 

  49. Aboaf, J.A.: Deposition and properties of aluminum oxide obtained by pyrolytic decomposition of an aluminum alkoxide. J. Electro-chem. Soc. 114, 948–952 (1967)

    Article  Google Scholar 

  50. Kumagai, H., Toyoda, K., Matsumoto, M., Obara, M.: Comparative study of Al\(_{2}\)O\(_{3}\) optical crystalline thin films grown by vapor combinations of Al(CH\(_{3}\))\(_{3}\)/N\(_{2}\)O and Al(CH\(_{3}\))\(_{3}\)/H\(_{2}\)O\(_{2}\). Jpn. J. Appl. Phys. 32, 6137–6140 (1993)

    Article  Google Scholar 

  51. Kim, Y., Lee, S.M., Park, C.S., Lee, S.I., Lee, M.Y.: Substrate dependence on the optical properties of Al\(_{2}\)O\(_{3}\) films grown by atomic layer deposition. Appl. Phys. Lett. 71, 3604–3606 (1997)

    Article  Google Scholar 

  52. Kukli, K., Ritala, M., Leskelä, M., Jokinen, J.: Atomic layer epitaxy growth of aluminum oxide thin films from a novel Al(CH\(_{3}\))\(_{2}\)Cl precursor and H\(_{2}\)O. J. Vac. Sci. Technol. A 15, 2214–2218 (1997)

    Article  Google Scholar 

  53. Aguilar-Frutis, M., Garcia, M., Falcony, C.: Optical and electrical properties of aluminum oxide films deposited by spray pyrolysis. Appl. Phys. Lett. 72, 1700–1702 (1998)

    Article  Google Scholar 

  54. Kuo, D.-H., Cheung, B.-Y., Wu, R.-J.: Growth and properties of aluminafilms obtained by low-pressure metal-organic chemical vapor deposition. Thin Solid Films 398–399, 35–40 (2001)

    Article  Google Scholar 

  55. Groner, M.D., Fabreguette, F.H., Elam, J.W., George, S.M.: Lowtemperature Al\(_{2}\)O\(_{3}\) atomic layer deposition. Chem. Mater. 16, 639–645 (2004)

    Article  Google Scholar 

  56. Carmona-Tellez, S., Guzman-Mendoza, J., Aguilar-Frutis, M., Alarcon-Flores, G., Garcia-Hipolito, M., Canseco, M.A., Falcony, C.: Electrical, optical, and structural characteristics of Al\(_{2}\)O\(_{3}\) thin films prepared by pulsed ultrasonic sprayed pyrolysis. J. Appl. Phys. 103, 034105 (2008)

    Article  Google Scholar 

  57. Kumar, P., Wiedman, M.K., Winter, C.H., Avrutsky, I.: Optical properties of Al\(_{2}\)O\(_{3}\) thin films grown by atomic layer deposition. Appl. Opt. 48, 5407–5412 (2009)

    Article  Google Scholar 

  58. Malitson, I.H.: Refraction and dispersion of synthetic sapphire. J. Opt. Soc. Am. 52, 1377–1379 (1962)

    Article  Google Scholar 

  59. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 85th edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  60. Jellison, G.E., Modine, F.A.: Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69, 371–373 (1996)

    Article  Google Scholar 

  61. Aspnes, D.E.: Optical properties. In: Hull, R. (Ed.), Properties of crystalline silicon, London: INSPEC, the Institution of Electrical Engineers (1999)

    Google Scholar 

  62. Herzinger, C.M., Johs, B., McGahan, W.A., Woollam, J.A., Paulson, W.: Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J. Appl. Phys. 83, 3323–3336 (1998)

    Article  Google Scholar 

  63. van Nijnatten, P.: An automated directional reectance/transmittance analyser for coating analysis. Thin Solid Films 442, 74–79 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lachlan E. Black .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Black, L.E. (2016). Relationship Between Al\(_{2}\)O\(_{3}\) Bulk and Interface Properties. In: New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-32521-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32521-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32520-0

  • Online ISBN: 978-3-319-32521-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics