Skip to main content

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 2056 Accesses

Abstract

About two-thirds of the primary energy today is used directly for transportation or as heating fuels J.M. Ogden, Prospects for building a hydrogen energy infrastructure. Ann. Rev. Energy Environ. 24(1), 227–279 (1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://www3.epa.gov/climatechange/ccs/.

  2. 2.

    Methane molar fraction in imported Natural Gas in Spain typically approaches 90 %, but it depends on the origin [5].

  3. 3.

    A rich combustion is an oxidation process where the fuel/air ratio is higher than 1, that is, there is less air (or oxygen) in the environment than the necessary to achieve a complete oxidation of the fuel.

  4. 4.

    The Lower Heating Value (LHV) is the heat released by a determined compound after a combustion process, without accounting for the heat absorbed by the water during its vaporization (latent heat of vaporization).

  5. 5.

    The balance between the downward in electricity demand by the electrolyser at 1000 \(^\circ \)C and the heat required for heating water to this temperature, is positive. It represents an energy saving with respect to electrolysis at 100 \(^\circ \)C.

  6. 6.

    Located in Sevilla, Zaragoza, Huesca and Albacete. The map of operative, nonoperative, and planned hydrogen stations can be found at http://www.netinform.net/H2/H2Stations/Default.aspx.

  7. 7.

    The word powertrain refers to the group of elements in a vehicle that transforms the energy contained in the fuel into useful power and delivers it to the surroundings. Powertrain includes the engine, transmission, drive shafts, differentials and wheels.

  8. 8.

    CO\(_2\) and other pollutants, depending on the fuel. See Sect. 3.1.3.

  9. 9.

    This number slightly differs from the 51 TWh mentioned in Chap. 2. This is because it was computed with slightly different fuel consumption statistics for diesel and gasoline cars.

  10. 10.

    Environmental Protection Agency, see http://www3.epa.gov/otaq/sftp.htm.

  11. 11.

    Pathways, assumptions, and procedure can be found at https://greet.es.anl.gov/.

  12. 12.

    Setting up a pipeline grid is a slow and expensive process.

  13. 13.

    This is only an assumption. During its performance, every process consumes a certain amount of energy that is not related to the raw material used as input of the process. See model simplifications at the beginning of the section.

  14. 14.

    The most efficient configuration would be based on hydrogen production from fossil fuels in the same place where hydrogen is consumed. This is not always possible and can incur in unacceptably high GHG emissions in the long run.

  15. 15.

    See http://solargis.info/doc/free-solar-radiation-maps-GHI.

  16. 16.

    Solar panels usually cannot cover the totality of the surface where they are located.

  17. 17.

    Note that Spain surface is 504,645 km\(^2\), but 300,422 km\(^2\) are already occupied by land exploitations [35].

  18. 18.

    The peak of world gas production is forecasted around 2020. That of coal, around 2050 [36].

  19. 19.

    CO\(_2\) emissions during the hydrogen generation may be lower than the CO\(_2\) absorbed by the plant during its growth.

  20. 20.

    Maximum potential about 60 TWh ([37], p. 462).

References

  1. J.M. Ogden, Prospects for building a hydrogen energy infrastructure. Ann. Rev. Energy Environ. 24(1), 227–279 (1999)

    Article  Google Scholar 

  2. M.M. Mench, Fuel Cell Engines (Wiley, Chichester, 2008)

    Book  Google Scholar 

  3. José Ignacio Linares Hurtado and Beatriz Yolanda Moratilla Soria. El hidrógeno y la energía (2007)

    Google Scholar 

  4. J. Jechura, Hydrogen from natural gas via steam methane reforming (SMR) (2015)

    Google Scholar 

  5. Información básica de los sectores de la energía 2012. Technical report, Comisión Nacional de la Energía (2012)

    Google Scholar 

  6. Board on Energy and Environmental Systems, Comittee on Alternativesand Strategies for Future Hydrogen Production and Use, Division on Engineering and Physical Sciences, National Research Council, and National Academy of Engineering. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs (National Academies Press, 2004)

    Google Scholar 

  7. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007 - Mitigation of Climate Change: Working Group III contribution to the Fourth Assessment Report of the IPCC. Assessment report (Intergovernmental Panel on Climate Change): Working Group (Cambridge UniversityPress, 2007)

    Google Scholar 

  8. P. Jaramillo, C. Samaras, H. Wakeley, K. Meisterling, Greenhouse gas implications of using coal for transportation: life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways. Energy Policy 37(7), 2689–2695 (2009)

    Article  Google Scholar 

  9. M. Ruth, M. Laffen, T.A. Timbario, Hydrogen pathways: cost, well-to-wheels energy use, and emissions for the current technology status of seven hydrogen production, delivery, and distribution scenarios. Technical report, National Renewable Energy Laboratory (NREL), Golden, CO (2009)

    Google Scholar 

  10. M.A. Laguna-Bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012)

    Article  Google Scholar 

  11. T. Riis, E.F. Hagen, P.J.S. Vie, Ø. Ulleberg, Hydrogen production and storage. R&D priorities and gasps. Technical report, International Energy Agency (IEA) (2006)

    Google Scholar 

  12. Wikipedia. Public domain—wikipedia, the free encyclopedia (2016) [Online]. Accessed 1 Mar 2016

    Google Scholar 

  13. M.A. Hortal, A.L.M. Barrera, El Hidrógeno: Fundamento de un futuro equilibrado (Editorial Díaz de Santos, S.A., 2012)

    Google Scholar 

  14. Asociación Española de Pilas de Combustible APPICE. Safety and regulations (2015), http://www.appice.es/app.php?x=3&x2=5_4. Accessed 05 May 2015

  15. R. Luque, Oportunidades de la economía del hidrógeno. Presentation for GENERA 2015, AEH2 (2015)

    Google Scholar 

  16. E. Girón, FCH JU under h2020: projects/success stories. Presentation for GENERA 2015, AEH2 (2015)

    Google Scholar 

  17. The European Parliament and the Council of the European Union. Directive 2014/94/ue (2014)

    Google Scholar 

  18. R. Edwards, H. Hass, L. Lonza, H. Maas, D. Rickeard et al., in WELL-TO-WHEELS Report version 4. a: JEC WELL-TO-WHEELS ANALYSIS (Publications Office of the European Union, 2014)

    Google Scholar 

  19. W.A. Amos et al., Costs of storing and transporting hydrogen (National Renewable Energy Laboratory Golden, CO, USA, 1998)

    Google Scholar 

  20. L. Ole Valøen, M.I. Shoesmith, The effect of phev and hev duty cycles on battery and battery pack performance, in PHEV 2007 Conference (2007), pp. 4–5

    Google Scholar 

  21. Wikipedia. Maximum power transfer theorem, https://es.wikipedia.org/wiki/Teorema_de_maxima_potencia

  22. E.J. Domínguez, J. Ferrer, Sistemas de transmisión y frenado, Ciclos Formativos, Editorial Editex (2012)

    Google Scholar 

  23. U.S. Department of Energy. Lower and higher heating values of fuels. Web page: http://hydrogen.pnl.gov/tools/lower-and-higher-heating-values-fuels. Accessed 08 July 2015

  24. R. Edwards, J.-F. Larivé, J-C. Beziat, Well-to-wheels analysis of future automotive fuels and powertrains in the european context. Technical Report Version 3c, European Commission Joint Research Centre (2011)

    Google Scholar 

  25. Instituto para la Diviersificación y Ahorro de la Energía (IDAE). Consumo de carburante por tipo de motorización, marca y modelo, http://coches.idae.es/portal/BaseDatos/MarcaModelo.aspx

  26. Red Eléctrica de España. The spanish electricity system. preliminary report 2014. Technical report, Red Eléctrica de España (2015)

    Google Scholar 

  27. National Aeronautics and Space Administration of the United States (NASA). Global water budget, http://neptune.gsfc.nasa.gov/index.php?section=26. Accessed 08 July 2015

  28. T. Ramsden, M. Ruth, V. Diakov, M. Laffen, T.A. Timbario, Hydrogen pathways: Updated cost, well-to-wheels energy use, and emissions for the current technology status of ten hydrogen production, delivery, and distribution scenarios. Technical report, National Renewable Energy Laboratory (NREL), Golden, CO. (2013)

    Google Scholar 

  29. A.B. Chhetri, R. Islam, Inherently-Sustainable Technology Development (Nova Science, New York, 2008)

    Google Scholar 

  30. C. Fernández-Bolaños Badía, R. Velázquez Villa. Energética del hidrógeno. contexto, estado actual y perspectivas de futuro. Master’s thesis, Escuela Técnica Superior de Ingenieros Industriales. Universidad de Sevilla (2005)

    Google Scholar 

  31. Eurelectric. Electricity industry trends & figures (2015), http://www.eurelectric.org/electricity-industry-trends-figures/. Accessed 08 July 2015

  32. Fundación para estudios sobre la energía. Red alta tensión (2015), http://www.fundacionenergia.es/contenidos.htm. Accessed 09 July 2015

  33. Iea energy technology essentials. Hydrogen production & distribution. Technical report, International Energy Agency (IEA) (2007)

    Google Scholar 

  34. International Energy Agency. Key World Energy Statistics 2015 (2015)

    Google Scholar 

  35. Instituto Nacional de Estadística (INE). Encuesta sobre la estructura de las explotaciones agrícolas - año (2013), http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176854&menu=ultiDatos&idp=1254735727106. Accessed 010 July 2015

  36. G. Maggio, G. Cacciola, When will oil, natural gas, and coal peak? Fuel 98, 111–123 (2012)

    Article  Google Scholar 

  37. Instituto para la Diversificación y Ahorro de la Energía. Plan de energías renovables (per) 2011-2020. Technical report (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Montoya Sánchez de Pablo .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Montoya Sánchez de Pablo, J., Miravalles López, M., Bret, A. (2016). The Hydrogen Model. In: How Green are Electric or Hydrogen-Powered Cars?. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-32434-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32434-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32433-3

  • Online ISBN: 978-3-319-32434-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics