Skip to main content

Development of Human Neurophysiological Activity and Network Dynamics

  • Chapter
  • First Online:
Book cover Multimodal Oscillation-based Connectivity Theory

Abstract

Neural oscillations and their coordination among brain areas have been related to the brain’s ability to dynamically modulate communication in distributed networks. Such integration of transient distributed cell assemblies is thought to support the dynamic repertoire of cognition, perception, and behavior. Such neurophysiological connectivity has been linked to phenomena such as metastability and complexity in brain signals. To better understand the maturation of functional neurophysiological activity and network communication dynamics, this chapter reviews the development of classical properties of EEG and MEG rhythms such as spectral power and phase synchronization, as well as measures of functional connectivity based on nonlinear dynamics including information-theoretic measures of functional connectivity, metastability, and signal complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benasich AA, Gou Z, Choudhury N, Harris KD (2008) Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav Brain Res 195(2):215–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Boersma M, Smit DJ, de Bie H, Van Baal GC, Boomsma DI, de Geus EJ, Delemarre‐van de Waal HA, Stam CJ (2011) Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Mapp 32(3):413–425

    Article  PubMed  Google Scholar 

  • Boersma M, Smit DJ, Boomsma DI, Geus EJ, Delemarre-van de Waal HA, Stam C (2013) Growing trees in child brains: graph theoretical analysis of EEG derived minimum spanning tree in 5 and 7 year old children reflects brain maturation. Brain Connect 3:50–60

    Article  PubMed  Google Scholar 

  • Bruce EN, Bruce MC, Vennelaganti S (2009) Sample entropy tracks changes in EEG power spectrum with sleep state and aging. J Clin Neurophysiol 26(4):257

    Article  PubMed  PubMed Central  Google Scholar 

  • Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14(11):506–515

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89(6):068102

    Article  PubMed  Google Scholar 

  • Cragg L, Kovacevic N, McIntosh AR, Poulsen C, Martinu K, Leonard G, Paus T (2011) Maturation of EEG power spectra in early adolescence: a longitudinal study. Dev Sci 14(5):935–943

    Article  PubMed  Google Scholar 

  • Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci 106(25):10302–10307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikanev T, Smirnov D, Wennberg R, Velazquez JP, Bezruchko B (2005) EEG nonstationarity during intracranially recorded seizures: statistical and dynamical analysis. Clin Neurophysiol 116(8):1796–1807

    Article  CAS  PubMed  Google Scholar 

  • Doesburg SM, Ribary U, Herdman AT, Moiseev A, Cheung T, Miller SP, Poskitt KJ, Weinberg H, Whitfield MF, Synnes A, Grunau RE (2010) Magnetoencephalography reveals slowing of resting peak oscillatory frequency in children born very preterm. Pediatr Res 70(2):171–175

    Article  Google Scholar 

  • Doesburg SM, Ribary U, Herdman AT, Miller SP, Poskitt KJ, Moiseev A, Whitfield MF, Synnes A, Grunau RE (2011) Altered long-range alpha-band synchronization during visual short-term memory retention in children born very preterm. Neuroimage 54(3):2330–2339

    Article  PubMed  Google Scholar 

  • Doesburg SM, Moiseev A, Herdman AT, Ribary U, Grunau RE (2013) Region-specific slowing of alpha oscillations is associated with visual-perceptual abilities in children born very preterm. Front Hum Neurosci 7:791

    PubMed  PubMed Central  Google Scholar 

  • Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15(5):191–199

    Article  PubMed  Google Scholar 

  • Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel AK, Gerloff C, Hilgetag CC, Nolte G (2013) Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80(4):867–886

    Article  CAS  PubMed  Google Scholar 

  • Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5), e1000381

    Article  PubMed  PubMed Central  Google Scholar 

  • Freyer F, Roberts JA, Becker R, Robinson PA, Ritter P, Breakspear M (2011) Biophysical mechanisms of multistability in resting-state cortical rhythms. J Neurosci 31(17):6353–6361

    Article  CAS  PubMed  Google Scholar 

  • Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88(1):220–235

    Article  CAS  PubMed  Google Scholar 

  • Gasser T, Verleger R, Bächer P, Sroka L (1988) Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalogr Clin Neurophysiol 69(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK (2008) Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn Neurodyn 2(2):115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez C, Pérez-Macías JM, Poza J, Fernández A, Hornero R (2013) Spectral changes in spontaneous MEG activity across the lifespan. J Neural Eng 10(6):066006

    Article  PubMed  Google Scholar 

  • Gou Z, Choudhury N, Benasich AA (2011) Resting frontal gamma power at 16, 24 and 36 months predicts individual differences in language and cognition at 4 and 5 years. Behav Brain Res 220(2):263–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Haken H (2013) Principles of brain functioning: a synergetic approach to brain activity, behavior and cognition, vol 67. Springer, Berlin

    Google Scholar 

  • Janjarasjitt S, Scher MS, Loparo KA (2008) Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between neurodevelopment and complexity. Clin Neurophysiol 119(4):822–836

    Article  CAS  PubMed  Google Scholar 

  • Kaffashi F, Foglyano R, Wilson CG, Loparo KA (2008) The effect of time delay on Approximate & Sample Entropy calculations. Physica D Nonlinear Phenom 237(23):3069–3074

    Article  Google Scholar 

  • Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H et al (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16(1):41–48

    Article  PubMed  Google Scholar 

  • Kohlmorgen J, Müller KR, Rittweger J, Pawelzik K (2000) Identification of nonstationary dynamics in physiological recordings. Biol Cybern 83(1):73–84

    Article  CAS  PubMed  Google Scholar 

  • Kolmogorov AN (1959) Entropy per unit time as a metric invariant of automorphism. Doklady Russ Acad Sci 124:754–755

    Google Scholar 

  • Latchoumane CFV, Ifeachor E, Hudson N, Wimalaratna S, Jeong J (2008) Dynamical nonstationarity analysis of resting EEGs in Alzheimer’s disease. In: Neural information processing. Springer, Berlin, pp 921–929

    Google Scholar 

  • Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31(5):439–449

    Article  CAS  PubMed  Google Scholar 

  • Lippé S, Kovacevic N, McIntosh AR (2009) Differential maturation of brain signal complexity in the human auditory and visual system. Front Hum Neurosci 3:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Manuca R, Savit R (1996) Stationarity and nonstationarity in time series analysis. Physica D Nonlinear Phenom 99(2):134–161

    Article  Google Scholar 

  • Marshall PJ, Bar-Haim Y, Fox NA (2002) Development of the EEG from 5 months to 4 years of age. Clin Neurophysiol 113(8):1199–1208

    Article  PubMed  Google Scholar 

  • Martinović Z, Jovanović V, Ristanović D (1998) EEG power spectra of normal preadolescent twins. Gender differences of quantitative EEG maturation. Clin Neurophysiol 28(3):231–248

    Article  Google Scholar 

  • McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13(8–9):861–870

    Article  CAS  PubMed  Google Scholar 

  • McIntosh AR, Kovacevic N, Itier RJ (2008) Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol 4(7):e1000106

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntosh AR, Vakorin V, Kovacevic N, Wang H, Diaconescu A, Protzner AB (2013) Spatiotemporal dependency of age-related changes in brain signal variability. Cereb Cortex 24(7):1806–1817

    Google Scholar 

  • Meyer-Lindenberg A (1996) The evolution of complexity in human brain development: an EEG study. Electroencephalogr Clin Neurophysiol 99(5):405–411

    Article  CAS  PubMed  Google Scholar 

  • Mišić B, Vakorin VA, Paus T, McIntosh AR (2011) Functional embedding predicts the variability of neural activity. Front Syst Neurosci 5:90

    PubMed  PubMed Central  Google Scholar 

  • Mišić B, Doesburg SM, Fatima Z, Vidal J, Vakorin VA, Taylor MJ, McIntosh AR (2015) Coordinated information generation and mental flexibility: large-scale network disruption in children with autism. Cereb Cortex 25(9):2815–2827

    Article  PubMed  Google Scholar 

  • Mizuno T, Takahashi T, Cho RY, Kikuchi M, Murata T, Takahashi K, Wada Y (2010) Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clin Neurophysiol 121(9):1438–1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30(4):150–158

    Article  CAS  PubMed  Google Scholar 

  • Palva S, Palva JM (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16(4):219–230

    Article  PubMed  Google Scholar 

  • Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25(15):3962–3972

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Kim S, Kim CH, Cichocki A, Kim K (2007) Multiscale entropy analysis of EEG from patients under different pathological conditions. Fractals 15(04):399–404

    Article  Google Scholar 

  • Pereda E, de La Cruz DM, Manas S, Garrido JM, López S, González JJ (2006) Topography of EEG complexity in human neonates: effect of the postmenstrual age and the sleep state. Neurosci Lett 394(2):152–157

    Article  CAS  PubMed  Google Scholar 

  • Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88(6):2297–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp PE, Albano AM, Schmah TI, Farwell LA (1993) Filtered noise can mimic low-dimensional chaotic attractors. Phys Rev E 47(4):2289

    Article  Google Scholar 

  • Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Phys Heart Circ Phys 278(6):H2039–H2049

    CAS  Google Scholar 

  • Schäfer CB, Morgan BR, Ye AX, Taylor MJ, Doesburg SM (2014) Oscillations, networks, and their development: MEG connectivity changes with age. Hum Brain Mapp 35(10):5249–5261

    Article  PubMed  Google Scholar 

  • Scher MS, Waisanen H, Loparo K, Johnson MW (2005) Prediction of neonatal state and maturational change using dimensional analysis. J Clin Neurophysiol 22(3):159–165

    PubMed  Google Scholar 

  • Schreiber T, Schmitz A (1997) Classification of time series data with nonlinear similarity measures. Phys Rev Lett 79(8):1475

    Article  CAS  Google Scholar 

  • Sinai YG (1959) On the notion of entropy of a dynamical system. Doklady Russ Acad Sci 124:768–771

    Google Scholar 

  • Stroganova TA, Orekhova EV, Posikera IN (1999) EEG alpha rhythm in infants. Clin Neurophysiol 110(6):997–1012

    Article  CAS  PubMed  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. Springer, Berlin

    Book  Google Scholar 

  • Uhlhaas PJ, Roux F, Singer W, Haenschel C, Sireteanu R, Rodriguez E (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci USA 106(24):9866–9871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2010) Neural synchrony and the development of cortical networks. Trends Cogn Sci 14(2):72–80

    Article  PubMed  Google Scholar 

  • Vakorin VA, McIntosh AR (2012) Mapping the multi-scale information content of complex brain signals. In: Principles of brain dynamics: global state interactions, pp 183–208

    Google Scholar 

  • Vakorin VA, Lippé S, McIntosh AR (2011a) Variability of brain signals processed locally transforms into higher connectivity with brain development. J Neurosci 31(17):6405–6413

    Article  CAS  PubMed  Google Scholar 

  • Vakorin VA, Mišić B, Krakovska O, McIntosh AR (2011b) Empirical and theoretical aspects of generation and transfer of information in a neuromagnetic source network. Front Syst Neurosci 5:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Vakorin VA, McIntosh AR, Mišić B, Krakovska O, Poulsen C, Martinu K, Paus T (2013) Exploring age-related changes in dynamical non-stationarity in electroencephalographic signals during early adolescence. PLoS One 8(3), e57217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    Article  CAS  PubMed  Google Scholar 

  • von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38(3):301–313

    Article  Google Scholar 

  • Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7(12):553–559

    Article  PubMed  Google Scholar 

  • Zhang D, Ding H, Liu Y, Zhou C, Ding H, Ye D (2009) Neurodevelopment in newborns: a sample entropy analysis of electroencephalogram. Physiol Meas 30(5):491

    Article  PubMed  Google Scholar 

  • Zhang YC (1991) Complexity and 1/f noise. A phase space approach. J Phys I 1(7):971–977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam M. Doesburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vakorin, V.A., Doesburg, S.M. (2016). Development of Human Neurophysiological Activity and Network Dynamics. In: Palva, S. (eds) Multimodal Oscillation-based Connectivity Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-32265-0_7

Download citation

Publish with us

Policies and ethics