Skip to main content

Algae-Made Antibodies and Immunotoxins

  • Chapter
  • First Online:
Algae-Based Biopharmaceuticals

Abstract

Monoclonal antibodies (mAbs) constitute a key tool applied in therapeutic, diagnostic, and research. For therapeutic purposes, passive immunotherapy against chronic diseases, infectious diseases, as well as anti-venoms are relevant applications of antibodies in the medical field. Immunotoxins play a relevant role in the development of innovative cancer therapies. Current platforms for producing these mAbs and immunotoxins possess some limitations, such as high cost and complex syntheses procedures. Microalgae have entered into this field as an attractive platform for producing biopharmaceuticals (BFs) at low cost and high safety. Algae chloroplasts have been used as a low-cost and efficient biofactories for functional antibodies and immunotoxins, whereas approaches based in nuclear expression have allowed for the synthesis and even secretion of full-length antibodies. The present chapter describes the advances in this field and identifies the perspectives for achieving new products, namely biosimilars, biobetters, or next generation molecules using algae as biofactories and perhaps delivery vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarenga LM, Zahid M, di Tommaso A, Juste MO, Aubrey N, Billiald P, Muzard J (2014) Engineering venom’s toxin-neutralizing antibody fragments and its therapeutic potential. Toxins (Basel) 6(8):2541–2567

    Article  Google Scholar 

  • Antignani A, Fitzgerald D (2013) Immunotoxins: the role of the toxin. Toxins (Basel) 5(8):1486–1502

    Article  CAS  Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K, Working Group on Civilian Biodefense (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285(8):1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Bakker H, Rouwendal GJ, Karnoup AS, Florack DE, Stoopen GM, Helsper JP, van Ree R, van Die I, Bosch D (2006) An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci U S A 103(20):7577–7582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrera DJ, Rosenberg JN, Chiu JG, Chang YN, Debatis M, Ngoi SM, Chang JT, Shoemaker CB, Oyler GA, Mayfield SP (2015) Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnol J 13(1):117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berns M, Hommes DW (2015) Anti-TNF-α therapies for the treatment of Crohn’s disease: the past, present and future. Expert Opin Investig Drugs 25(2):129–143

    Google Scholar 

  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242(4877):423–426

    Article  CAS  PubMed  Google Scholar 

  • Borriello M, Laccetti P, Terrazzano G, D’Alessio G, De Lorenzo C (2011) A novel fully human antitumour immunoRNase targeting ErbB2-positive tumours. Br J Cancer 104(11):1716–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley AM, Devine M, DeRemer D (2013) Brentuximab vedotin: an anti-CD30 antibody-drug conjugate. Am J Health Syst Pharm 70(7):589–597

    Article  CAS  PubMed  Google Scholar 

  • Chadd HE, Chamow SM (2001) Therapeutic antibody expression technology. Curr Opin Biotechnol 12(2):188–194

    Article  CAS  PubMed  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24(12):1591–1597

    Article  CAS  PubMed  Google Scholar 

  • D’Avino C, Paciello R, Riccio G, Coppola C, Laccetti P, Maurea N, Raines RT, De Lorenzo C (2014) Effects of a second-generation human anti-ErbB2 ImmunoRNase on trastuzumab-resistant tumors and cardiac cells. Protein Eng Des Sel 27(3):83–88

    Article  PubMed  PubMed Central  Google Scholar 

  • De Genst E, Saerens D, Muyldermans S, Conrath K (2006) Antibody repertoire development in camelids. Dev Comp Immunol 30(1–2):187–198

    Article  PubMed  Google Scholar 

  • De Lorenzo C, Tedesco A, Terrazzano G, Cozzolino R, Laccetti P, Piccoli R, D’Alessio G (2004) A human, compact, fully functional anti-ErbB2 antibody as a novel antitumour agent. Br J Cancer 91(6):1200–1204

    PubMed  PubMed Central  Google Scholar 

  • De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8(5):529–563

    Article  PubMed  Google Scholar 

  • Decker EL, Reski R (2012) Glycoprotein production in moss bioreactors. Plant Cell Rep 31(3):453–460

    Article  CAS  PubMed  Google Scholar 

  • Farid SS (2006) Established bioprocesses for producing antibodies as a basis for future planning. Adv Biochem Eng Biotechnol 101:1–42

    CAS  PubMed  Google Scholar 

  • FitzGerald D, Pastan I (1991) Redirecting Pseudomonas exotoxin. Semin Cell Biol 2(1):31–37

    CAS  PubMed  Google Scholar 

  • Frankel AD (ed) (1992) Genetically engineered toxins. Mercel Dekker, New York, pp 439–445

    Google Scholar 

  • Gleba YY, Tusé D, Giritch A (2014) Plant viral vectors for delivery by Agrobacterium. Curr Top Microbiol Immunol 375:155–192

    CAS  PubMed  Google Scholar 

  • Gordon VM, Klimpel KR, Arora N, Henderson MA, Leppla SH (1995) Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 63(1):82–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gressel J (2010) Needs for and environmental risks from transgenic crops in the developing world. N Biotechnol 27(5):522–527

    Article  CAS  PubMed  Google Scholar 

  • Hempel F, Lau J, Klingl A, Maier UG (2011) Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One 6(12):e28424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel F, Maier UG (2012) An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb Cell Fact 11:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York

    Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  • Kohli N, Westerveld DR, Ayache AC, Verma A, Shil P, Prasad T, Zhu P, Chan SL, Li Q, Daniell H (2014) Oral delivery of bioencapsulated proteins across blood–brain and blood-retinal barriers. Mol Ther 22(3):535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, FitzGerald D, Chaudhary VK, Adhya S, Pastan I (1988) Activity of immunotoxins constructed with modified Pseudomonas exotoxin A lacking the cell recognition domain. J Biol Chem 263(19):9470–9475

    CAS  PubMed  Google Scholar 

  • Kreitman RJ, Wang QC, FitzGerald DJ, Pastan I (1999) Complete regression of human B-cell lymphoma xenografts in mice treated with recombinant anti-CD22 immunotoxin RFB4(dsFv)-PE38 at doses tolerated by cynomolgus monkeys. Int J Cancer 81(1):148–155

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Pop LM, Schindler J, Vitetta ES (2012) Immunotoxins constructed with chimeric, short-lived anti-CD22 monoclonal antibodies induce less vascular leak without loss of cytotoxicity. MAbs 4(1):57–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Loos A, Steinkellner H (2012) IgG-Fc glycoengineering in non-mammalian expression hosts. Arch Biochem Biophys 526(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Mansfield E, Amlot P, Pastan I, FitzGerald DJ (1997a) Recombinant RFB4 immunotoxins exhibit potent cytotoxic activity for CD22-bearing cells and tumors. Blood 90(5):2020–2026

    CAS  PubMed  Google Scholar 

  • Mansfield E, Chiron MF, Amlot P, Pastan I, FitzGerald DJ (1997b) Recombinant RFB4 single-chain immunotoxin that is cytotoxic towards CD22-positive cells. Biochem Soc Trans 25(2):709–714

    Article  CAS  PubMed  Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 100(2):438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee J, Tremblay JM, Leysath CE, Ofori K, Baldwin K, Feng X, Bedenice D, Webb RP, Wright PM, Smith LA, Tzipori S, Shoemaker CB (2012) A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model. PLoS One 7:e29941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastan I, FitzGerald D (1991) Recombinant toxins for cancer treatment. Science 254:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Peters C, Brown S (2015) Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 35(4) pii: e00225

    Google Scholar 

  • Polakis P (2016) Antibody drug conjugates for cancer therapy. Pharmacol Rev 68(1):3–19

    Article  PubMed  Google Scholar 

  • Protalix (2015) http://www.protalix.com/development-pipeline/prx-106-autoimmune.asp

  • Raag R, Whitlow M (1995) Single-chain Fvs. FASEB 9(1):73–80

    CAS  Google Scholar 

  • Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 9(4):e94028

    Article  PubMed  PubMed Central  Google Scholar 

  • Reski R, Parsons J, Decker EL (2015) Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol J 13(8):1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncolato EC, Campos LB, Pessenda G, Costa e Silva L, Furtado GP, Barbosa JE (2015) Phage display as a novel promising antivenom therapy: a review. Toxicon 93:79–84

    Article  CAS  PubMed  Google Scholar 

  • Rybak SM, Newton DL (1999) Natural and engineered cytotoxic ribonucleases: therapeutic potential. Exp Cell Res 253(2):325–335

    Article  CAS  PubMed  Google Scholar 

  • Sack M, Rademacher T, Spiegel H, Boes A, Hellwig S, Drossard J, Stoger E, Fischer R (2015) From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnol J 13(8):1094–1105

    Article  CAS  PubMed  Google Scholar 

  • Salazar-González JA, Bañuelos-Hernández B, Rosales-Mendoza S (2015) Current status of viral expression systems in plants and perspectives for oral vaccines development. Plant Mol Biol 87(3):203–217

    Article  PubMed  Google Scholar 

  • Schahs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5(5):657–663

    Article  PubMed  Google Scholar 

  • Schindler J, Sausville E, Messmann R, Uhr JW, Vitetta ES (2001) The toxicity of deglycosylated ricin A chain-containing immunotoxins in patients with non-Hodgkin’s lymphoma is exacerbated by prior radiotherapy: a retrospective analysis of patients in five clinical trials. Clin Cancer Res 7(2):255–258

    CAS  PubMed  Google Scholar 

  • Shen GL, Li JL, Ghetie MA, Ghetie V, May RD, Till M, Brown AN, Relf M, Knowles P, Uhr JW, Janossy G, Amlot P, Vietta ES, Thorpe PE (1988) Evaluation of four CD22 antibodies as ricin A chain-containing immunotoxins for the in vivo therapy of human B-cell leukemias and lymphomas. Int J Cancer 42(5):792–797

    Article  CAS  PubMed  Google Scholar 

  • Sochaj AM, Świderska KW, Otlewski J (2015) Current methods for the synthesis of homogeneous antibody-drug conjugates. Biotechnol Adv 33(6 Pt 1):775–784

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ, Kushnir N, Yusibov V (2015) Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. Plant Biotechnol J 13(8):1136–1159

    Article  PubMed  Google Scholar 

  • Takkinen K, Laukkanen ML, Sizmann D, Alfthan K, Immonen T, Vanne L, Kaartinen M, Knowles JKC, Teeri TT (1991) An active single-chain antibody containing a cellulose linker domain is secreted by Escherichia coli. Protein Eng 4(7):837–841

    Article  CAS  PubMed  Google Scholar 

  • Tran M, Henry RE, Siefker D, Van C, Newkirk G, Kim J, Bui J, Mayfield SP (2013a) Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng 110(11):2826–2835

    Article  CAS  PubMed  Google Scholar 

  • Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (2013b) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 110(1):E15–E22

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104(4):663–673

    CAS  PubMed  Google Scholar 

  • Vanier G, Hempel F, Chan P, Rodamer M, Vaudry D, Maier UG, Lerouge P, Bardor M (2015) Biochemical characterization of human anti-hepatitis B monoclonal antibody produced in the microalgae Phaeodactylum tricornutum. PLoS One 10(10):e0139282

    Article  PubMed  PubMed Central  Google Scholar 

  • Venetz D, Hess C, Lin CW, Aebi M, Neri D (2015) Glycosylation profiles determine extravasation and disease-targeting properties of armed antibodies. Proc Natl Acad Sci U S A 112(7):2000–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma R, Boleti E, George AJ (1998) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J Immunol Methods 216(1–2):165–181

    Article  CAS  PubMed  Google Scholar 

  • Weiner LM, O’Dwyer J, Kitson J, Comis RL, Frankel AE, Bauer RJ, Konrad MS, Groves ES (1989) Phase I evaluation of an anti-breast carcinoma monoclonal antibody 260 F9-recombinant ricin A immunoconjugate. Cancer Res 49(14):4062–4067

    CAS  PubMed  Google Scholar 

  • Xie H, Audette C, Hoffee M, Lambert JM, Blättler WA (2004) Pharmacokinetics and biodistribution of the antitumor immunoconjugate, cantuzumab mertansine (huC242-DM1), and its two components in mice. J Pharmacol Exp Ther 308(3):1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Li G, Ren X, Herrler G (2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 127(3):335–347

    Article  CAS  PubMed  Google Scholar 

  • Zhang RY, Shen WD (2012) Monoclonal antibody expression in mammalian cells. Methods Mol Biol 907:341–358

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosales-Mendoza, S. (2016). Algae-Made Antibodies and Immunotoxins. In: Algae-Based Biopharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-32232-2_5

Download citation

Publish with us

Policies and ethics