Skip to main content

Sustainable Production of Polyphenols and Antioxidants by Plant In Vitro Cultures

  • Living reference work entry
  • First Online:
Bioprocessing of Plant In Vitro Systems

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Phenolic compounds represent big group of plant secondary metabolites that influence flavor, color, and texture and can be used as food additives, nutraceuticals, and pharmaceuticals.

However, there are some limitations in obtaining sufficient amount of these bioactive compounds from plants, because they are rather seldom or occur naturally in plant tissues only at very low concentrations. Alternatively, it is possible to synthesize them chemically, but this way if oft technologically not possible or very sophisticated and economically infeasible.

Plant in vitro cultures provide an attractive route to produce high-value plant-derived products and therefore can be an alternative source of valuable phenolics.

Moreover, compounds synthesized by plant in vitro cultures are natural products and therefore can be more easily accepted by consumers as artificially synthetized substances.

The synthesis of phytochemicals by plant in vitro cultures in contrast to these in plants is not depending on environmental conditions and can be regulated through standard physical and chemical conditions in bioreactor, which helps to avoid qualitative and quantitative fluctuations in product yield.

The process of obtaining valuable phytochemicals can be represented as a multistage technology, each link of which can vary individually in dependence of specific requirements of in vitro cultures (e.g., phytohormones, nutrients, light) or properties of end product (e.g., antioxidative potential, stability).

For the establishment of high-producing and fast-growing cell lines, the parent plants should be selected (Murthy et al. Strategies for enhanced production of plant secondary metabolites from cell and organ cultures. In: Production of biomass and bioactive compounds using bioreactor technology (pp. 471–509). Springer Plus). The expression of synthetic pathways can be influenced by environmental conditions, the supply of precursors, and the application of elicitors (Schreiner, Eur J Nutr 44(2):85–94, 2005) as well as altered by special treatments like biotransformation and immobilization (Georgiev et al., Appl Microbiol Biotechnol 83:809–823, 2009). The efficiency of bioprocessing can be increased by the simplification of methods for product recovery and afterward its stabilization.

This chapter reviews the recent advances in the optimization of environmental factors for production of phenolics by plant in vitro cultures, new developments in bioprocessing of plant cell, hairy root and organ cultures, and emerging technologies on phytochemical recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

Benzyladenine

DMSO:

Dimethyl sulfoxide

DW:

Dry weight

FW:

Fresh weight

IAA:

Indole-3-acetic acid

NAA:

1-Naphthalene acetic acid

References

  1. Mulabagal V, Tsay H (2004) Plant cell cultures as a source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  2. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites. Pharmacogn Rev 1:69. http://www.phcogrev.com

  3. Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ravichandran K, Ravichandran P, Saw NM, Gabr AMM, Ahmed A, Knorr D, Smetanska I (2012) Effects of different encapsulation agents and drying process on stability of betalain extracts. J Food Sci Technol. doi:https://doi.org/10.1007/s13197-012-0728-6, ISSN: 0022-1155

  4. Alfermann AW, Petersen M (1995) Natural products formation by plant cell biotechnology. Plant Cell Tissue Org Cult 43:199–205

    Article  CAS  Google Scholar 

  5. Filova A (2014) Production of some secondary metabolites in plant tissue cultures. Res J Agric Sci 46(1):263–245

    Google Scholar 

  6. Vamanu E, Nita S (2013) Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. Biomed Res Int 2013:313905

    Google Scholar 

  7. Bulgakov V, Vereshchagiona YV, Veremeichik GN (2017) Anticancer polyphenols from cultured plant cells: production and new bioengineering strategies. Curr Med Chem. doi:https://doi.org/10.2174/0929867324666170609080357

  8. Huang WY, Cai YZ, Zhang YB (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62:1–20

    Article  CAS  Google Scholar 

  9. Georgiev MI, Weber J, Maciuk J (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823

    Article  CAS  Google Scholar 

  10. Murthy HN, Dandin VS, Zhong JJ, Paek KY (2014) Strategies for enhanced production of plant secondary metabolites from cell and organ cultures. In: Production of biomass and bioactive compounds using bioreactor technology. Springer Plus, pp 471–509. doi:https://doi.org/10.1007/978-94-017-9223-3_20

  11. Moreno PRH, van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus Roseus: a literature survey. Plant Cell Tissue Organ Cult 42(1):1–25

    Article  Google Scholar 

  12. Weathers PJ, Towler MJ, Xu JF (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351

    Article  CAS  Google Scholar 

  13. Kim DJ, Chang HN (1990) Enhanced shikonin production from Lithospermum erythrorhizon by in situ extraction and calcium alginate immobilization. Biotechnol Bioeng 36(5):460–466

    Article  CAS  Google Scholar 

  14. King A, Young G (1999) Characteristics and occurrence of phenolic phytochemicals. J Am Diet Assoc 99(2):213–218

    Article  CAS  Google Scholar 

  15. Harris CS, Mo F, Migahed L, Chepelev L, Haddad PS, Wright JS, Willmore WG, Arnason JT, Bennett SAL (2007) Plant phenols regulate neoplastic cell growth and survival: a quantitative structure-activity and biochemical analysis. Can J Physiol Pharmacol 85:1124–1138

    Article  CAS  Google Scholar 

  16. Terao J (2009) Dietary flavonoids as antioxidants. Forum Nutr 61:87–94

    Article  CAS  Google Scholar 

  17. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentration of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075

    Article  CAS  Google Scholar 

  18. Huyskens-Keil S, Eichholz I, Kroh LW, Rohn S (2007) UV-B induced changes of phenol composition and antioxidant activity in black currant fruit (Ribes Nigrum L.) J Appl Bot Food Qual 81:140–144

    CAS  Google Scholar 

  19. Gonzalez-Gallego J, Sanchez-Campos S, Tunon MJ (2007) Anti-inflammatory properties of dietary flavonoids. Nutr Hosp 22:287–293

    CAS  Google Scholar 

  20. Rohn S, Petzke KJ, Rawel HM, Kroll J (2006) Reactions of chlorogenic acid and quercetin with a soy protein isolate – influence on the in vivo food protein quality in rats. Mol Nutr Food Res 50:696–704; Agarwal M, Kamal R (2007) Studies on flavonoid production using in vitro cultures of Momordica charantia L. Indian J Biotechnol 6:277–279

    Google Scholar 

  21. Maharik N, Elgengaihi S, Taha H (2009) Anthocyanin production in callus cultures of Crataegus sinaica Boiss. Inter J Acad Res 1:30–34

    Google Scholar 

  22. Ayabe S, Iida K, Furuya T (1986) Induction of stress metabolites in immobilized Glycyrrhiza echinata cultured cells. Plant Cell Rep 5(3):186–189

    Article  CAS  Google Scholar 

  23. Dixon RA (2005) Engineering of plant natural product pathways. Curr Opin Plant Biol 8(3):329–336

    Article  CAS  Google Scholar 

  24. Bandekar H, Lele SS (2014) Production of flavonol quercetin from cultured plant cells of banyan (Ficus benghalensis L.) Int J Innov Res Sci Eng Technol 3(5):12150–12157

    Google Scholar 

  25. Arya D, Patn V, Kant U (2008) In vitro propagation and quercetin quantification in callus cultures of Rasna (Pluchea lanceolata). Indian J Biotechnol 7:383–387

    CAS  Google Scholar 

  26. Stalikas CD (2007) Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30:3268–3295

    Article  CAS  Google Scholar 

  27. Tsao R, Papadopoulos Y, Yang R, Young JC, McRae K (2006) Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. J Agric Food Chem 54(16):5797–5805

    Article  CAS  Google Scholar 

  28. Ho SC, Chan AS, Ho YP, So EK, Sham A, Zee B, Woo JL (2007) Effects of soy isoflavone supplementation on cognitive function in Chinese postmenopausal women: a double-blind, randomized, controlled trial. Menopause 14(3):489–499

    Google Scholar 

  29. Thanonkeo S, Panichajakul S (2006) Production of isoflavones, daidzein and genistein in callus cultures of Pueraria candollei Wall. ex Benth. var. mirifica. Songklanakarin J Sci Technol 28:45–53

    Google Scholar 

  30. Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 3(13):222–1239

    Google Scholar 

  31. Ram M, Prasad KV, Kaur C, Singh SK, Arora A, Kumar S (2011) Induction of anthocyanin pigments in callus cultures of Rosa hybrida L. in response to sucrose and ammonical nitrogen levels. Plant Cell Tissue Organ Cult 104:171–179

    Article  CAS  Google Scholar 

  32. Curtin C, Zhang W, Franco C (2003) Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid and light irradiation. Biotechnol Lett 25(14):1131–1135

    Article  CAS  Google Scholar 

  33. Cai Z, Kastell A, Smetanska I (2014) Chitosan or yeast extract enhance the accumulation of eight phenolic acids in cell suspension cultures of Malus × domestica Borkh. J Hortic Sci Biotechnol 89:93–99. ISSN: 1462-0316

    Article  CAS  Google Scholar 

  34. Kiselev KV, Tyunin AP, Manyakhin AY, Zhuravlev YN (2011) Resveratrol content and expression patterns of stilbene synthase genes in Vitis amurensis cells treated with 5-azacytidine. Plant Cell Tissue Organ Cult 105:65–72

    Article  CAS  Google Scholar 

  35. Abbott JA, Medina-Bolivar F, Martin EM, Engelberth AS, Villagarcia H, Clausen EC, Carrier DJ (2010) Purification of resveratrol, arachidin-1, and arachidin-3 from hairy root cultures of peanut (Arachis hypogaea) and determination of their antioxidant activity and cytotoxicity. Biotechnol Prog 26:1344–1351

    Article  CAS  Google Scholar 

  36. Cai Z, Kastell A, Speiser C, Smetanska I (2013) Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Appl Biochem Biotechnol 171(2):330–340. https://doi.org/10.1007/s12010-013-0354-4

    Article  CAS  Google Scholar 

  37. Akowuah GA, Ismail Z, Norhayati I, Sadikun A (2005) The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chem 93(2):311–317

    Article  CAS  Google Scholar 

  38. Khadeer AMB, Aisha AFA, Nassar ZD, Siddiqui JM, Ismail Z, Omari SMS, Parish CR, Majid AMSA (2011) Cat’s whiskers tea (Orthosiphon stamineus) extract inhibits growth of colon tumor in nude mice and angiogenesis in endothelial cells via suppressing VEGFR phosphorylation. Nutr Cancer 64(1):89–99

    Google Scholar 

  39. Kumar J, Gupta PK (2008) Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotechnol Rep 2(2):93–112

    Article  Google Scholar 

  40. Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62(2):121–125

    Article  CAS  Google Scholar 

  41. Kurata H, Achioku T, Okuda N, Furusaki S (1998) Intermittent light irradiation with a second-scale interval enhances caffeine production by Coffea arabica cells. Biotechnol Prog 14(5):797–799

    Article  CAS  Google Scholar 

  42. Begum AN, Nicolle C, Mila I, Lapierre C, Nagano K, Fukushima K, Heinonen SM, Adlercreutz H, Remesy C, Scalbert A (2004) Dietary lignins are precursors of mammalian lignans in rats. J Nutr 134:120–127

    CAS  Google Scholar 

  43. Papandreou D, Zujaja TN, Maitha R (2015) The role of soluble, insoluble fibers and their bioactive compounds in cancer: a mini review. Food Nutr Sci 6:1–11

    Article  CAS  Google Scholar 

  44. Al-Okbi SY, Mohamed DA, Gabr AMM, Mabrok HB, Hamed TE (2017) Potential hepato- and reno-protective effect of artichoke callus culture and its alcohol extract in galactosamine hydrochloride treated rats. Int J Pharmacogn Phytochem Res 9(3):415–423

    Google Scholar 

  45. Mabrok HB, Klopfleisch R, Ghanem KZ, Clavel T, Blaut M, Loh G (2012) Lignan transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast cancer. Carcinogenesis 33(1):203–208

    Article  CAS  Google Scholar 

  46. Gabr AMM, Mabrok HB, Ghanem KZ, Blaut M, Smetanska I (2016) Lignan accumulation in callus and Agrobacterium rhizogenes mediated hairy root cultures of flax (Linum usitatissimum). Plant Cell Tissue Organ Cult 126:255–267

    Article  CAS  Google Scholar 

  47. Rates SMK (2001) Plants as sources of drugs. Toxicon 39:603–613

    Article  CAS  Google Scholar 

  48. Yang Y, He F, Yu L, Ji J, Wang Y (2008) Flavonoid accumulation in cell suspension cultures of Glycyrrhiza inflata Batal under optimizing conditions. Z Naturforsch 64:68–72

    Google Scholar 

  49. Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In: Advances in biochemical engineering/biotechnology, vol 72. Springer, Berlin/Heidelberg, 26 p

    Google Scholar 

  50. Tepe B, Sokmen A (2007) Production and optimisation of rosmarinic acid by Satureja hortensis L. callus cultures. Nat Prod Res 21:1133–1144

    Article  CAS  Google Scholar 

  51. Cai Z, Knorr D, Smetanska I (2012) Enhanced anthocyanins and resveratrol accumulation in Vitis vinifera cell suspension culture by indanoyl-isoleucine, N-linolenoyl-L-glutamine and insect saliva. Enzym Microb Technol 50:29–34. ISSN: 01410229

    Article  CAS  Google Scholar 

  52. Konczak-Islam I, Okuno S, Yoshimoto M, Yamakawa O (2013) Composition of phenolics and anthocyanins in a sweet potato cell suspension culture. Biochem Eng J 14:155–161

    Article  CAS  Google Scholar 

  53. Rao RS, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  54. Zenk MH (1977) Plant tissue culture and its bio-technological application. Springer-Verland, Berlin/Heidelberg. 27 p

    Google Scholar 

  55. Knorr D (1999) Novel approaches in food processing technology: new technologies for preserving foods and modifying function. Curr Opin Biotechnol 10:485–491

    Article  CAS  Google Scholar 

  56. Riedel H, Cai Z, Kütük O, Smetanska I (2010) Obtaining of phenolic acids from cell cultures of various Artemisia species. Afr J Biotechnol 9(51):8805–8809. ISSN: 1684–5315

    CAS  Google Scholar 

  57. Szabo E, Thelen A, Petersen M (1999) Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus Blumei. Plant Cell Rep 18(6):485–489

    Article  CAS  Google Scholar 

  58. Rhodes MJ, Spencer A, Hamill JD (1991) Plant cell culture in the production of flavour compounds. Biochem Soc Trans 19(3):702–706

    Article  CAS  Google Scholar 

  59. Sakamoto K, Iida K, Sawamura K, Hajiro K, Asada Y, Yoshikawa T, Furuya T (1994) Anthocyanin production in cultured cells of Aralia cordata Thunb. Plant Cell Tissue Organ Cult 36(1):1–26

    Article  Google Scholar 

  60. Vasconsuelo A, Giulietti AM, Boland R (2004) Signal transduction events mediating chitosan stimulation of anthraquinone synthesis in Rubia tinctorum. Plant Sci 166:405–413

    Article  CAS  Google Scholar 

  61. Kim HK, Sei-Ryang O, Lee HK, Huh H (2001) Benzothiadiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa O. Kuntze. Biotechnol Lett 23(1):55–60

    Article  Google Scholar 

  62. Doernenburg H, Knorr D (1996) Production of the phenolic flavour compounds with cultured cells and tissues of Vanilla planifolia species. Food Biotechnol 10:75–92

    Article  CAS  Google Scholar 

  63. Ochoa-Villarreal M, Howat S, Hong SM, Jang MO, Jin YW, Lee EK, Loake GJ (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49(3):149–158

    Article  CAS  Google Scholar 

  64. Zhang HC, Liu JM, Chen HM, Gao CC, HY L, Zhou H, Li Y, Gao SL (2011) Up-regulation of licochalcone A biosynthesis and secretion by Tween 80 in hairy root cultures of Glycyrrhiza uralensis Fisch. Mol Biotechnol 47:50–56

    Article  CAS  Google Scholar 

  65. Shinde AN, Malpathak N, Fulzele D (2010) Impact of nutrient components on production of the phytoestrogens daidzein and genistein by hairy roots of Psoralea corylifolia. J Nat Med 64:346–353

    Article  CAS  Google Scholar 

  66. Condori J, Sivakumar G, Hubstenberger J, Dolan MC, Sobolev VS, Medina-Bolivar F (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiol Biochem 48:310–318

    Article  CAS  Google Scholar 

  67. Bauer N, Kiseljak D, Jelaska S (2009) The effect of yeast extract and methyl jasmonate on rosmarinic acid accumulation in Coleus blumei hairy roots. Biol Plant 53:650–656

    Article  CAS  Google Scholar 

  68. Kim YK, Xu H, Park WT, Park NI, Lee SY, Park SU (2010) Genetic transformation of buckwheat (Fagopyrum esculentum M.) with Agrobacterium rhizogenes and production of rutin in transformed root cultures. Aust J Crop Sci 4:485–490

    CAS  Google Scholar 

  69. Georgieva L, Ivanov I, Marchev A, Aneva I, Denev P, Georgiev V, Pavlov A (2015) Protopine production by fumaria cell suspension cultures: effect of light. Appl Biochem Biotechnol 176(1):287–300. https://doi.org/10.1007/s12010-015-1574-6

    Article  CAS  Google Scholar 

  70. Georgiev MI, Eibl R, Zhong JJ (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97(9):3787–3800. https://doi.org/10.1007/s00253-013-4817-x

    Article  CAS  Google Scholar 

  71. Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395

    Article  CAS  Google Scholar 

  72. Schreiner M (2005) Vegetable crop management strategies to increase the quantity of phytochemicals. Eur J Nutr 44(2):85–94

    Article  CAS  Google Scholar 

  73. Mohdaly A, Hassanien M, Mahmoud A, Sarhan M, Smetanska I (2013) Phenolics extracted from potato, sugar beet, and sesame processing by-products. Int J Food Prop 16:1148–1168. https://doi.org/10.1080/10942912.2011.578318. ISSN: 1094-2912 print/1532-2386 online

    Article  CAS  Google Scholar 

  74. Ravichandran K, Saw NM, Mohdaly A, Kastell A, Riedel H, Cai Z, Knorr D, Smetanska I (2013) Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int 50(2):670–675. https://doi.org/10.1016/j.foodres.2011.07.002

    Article  CAS  Google Scholar 

  75. Hunaefi D, Riedel H, Akumo D, Gruda N, Smetanska I (2013) The effect of lactic acid fermentation on rosmarinic acid and antioxidant properties of in vitro shoot culture of Orthosiphon aristatus as a model study. Food Biotechnol 23:152–177. https://doi.org/10.1080/08905436.2013.781948

    Article  CAS  Google Scholar 

  76. Mewis I, Smetanska I, Müller C, Ulrichs C (2011) Specific polyphenolic compounds in cell culture of Vitis Vinifera Gamay Fréaux. Appl Biochem Biotechnol 164:148–161. https://doi.org/10.1007/s12010-010-9122-x. ISSN: 0273-2289

    Article  CAS  Google Scholar 

  77. Dicosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13:425–435

    Article  CAS  Google Scholar 

  78. Riedel H, Akumo DN, Saw NM, Smetanska I, Neubauer P (2012) Investigation of phenolic acids in suspension cultures of Vitis vinifera stimulated with indanoyl-isoleucine, N-linolenoyl-L-glutamine, malonyl coenzyme A and insect saliva. Metabolites 2:165–177. https://doi.org/10.3390/metabo2010165. ISSN: 2218-1989

    Article  CAS  Google Scholar 

  79. Manela N, Oliva M, Ovadia R, Sikron-Persi N, Ayenew B, Fait A, Galili G, Perl A, Weiss D, Oren-Shamir M (2015) Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. Front Plant Sci 6:538

    Article  Google Scholar 

  80. Shetty K (2001) Biosynthesis and medical applications of rosmarinic acid. J Herbs Spices Med Plants 8(2–3):161–181

    Article  Google Scholar 

  81. Hunaefi D, Gruda N, Smetanska I (2012) In vitro antioxidant activities in sprout culture of Orthosiphon aristatus after treatment with jasmonic acid and yeast extract. Acta Hortic 960:281–288. ISSN: 05677572

    Article  Google Scholar 

  82. Shevchenko Y, Wendt A, Smetanska I (2010) Sprout culture of Stevia rebaudiana Bertoni. In: Geuns J (ed) Stevia science, no fiction. Euprint Heverlee, pp 5–26. ISBN: 978-907-425-307-9

    Google Scholar 

  83. Georgiev M, Georgiev V, Weber J, Bley T, Ilieva M, Pavlov A (2008) Agrobacterium rhizogenes-mediated genetic transformations: a powerful tool for the production of metabolites. In: Wolf T, Koch J (eds) Genetically modified plants. Nova Science Publishers, Hauppauge, pp 99–126. ISBN: 978-1-60456-696-3

    Google Scholar 

  84. Nermeen MA, Gabr AMM, Ibrahim NM, Shevchenko Y, Smetanska I (2015) Study the effect of hairy root transformation on rapid growth (growth morphology) of Nepeta cataria in vitro cultures. J Innov Pharm Biol Sci, 440–450. ISSN: 2349-2759

    Google Scholar 

  85. Gabr A, Ghareeb H, El Shabrawi H, Smetanska I, Bekheet S (2016) Enhancement of silymarin and phenolic compounds accumulation in tissue culture of Milk thistle using elicitors feeding and hairy root cultures. Genet Eng Biotechnol J 14(2):327–333. https://doi.org/10.1016/j.jgeb.2016.10.003

    Article  Google Scholar 

  86. Sytar O, Gabr A, Taran N, Smetanska I (2013) Accumulation of phenolic compounds in hairy root culture of Fagopyrum esculentum Moench. Biotechnologica Acta 6(3):75–82. UDK 633.12:631.5:582:581.1

    Article  Google Scholar 

  87. Liu CZ, Guo C, Wang YC, Ouyang F (2002) Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Process Biochem 38:581–585

    Article  CAS  Google Scholar 

  88. Sudha CG, Sherina TV, Anu Anand VP, Reji JV, Padmesh P, Soniya EV (2013) Agrobacterium rhizogenes mediated transformation of the medicinal plant Decalepis arayalpathra and production of 2-hydroxy-4-methoxy benzaldehyde. Plant Cell Tiss Organ Cult 112:217–226

    Article  CAS  Google Scholar 

  89. Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Vereshchagina YV (2013) Recent advances in the understanding of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism. Adv Biochem Eng Biotechnol 134:1–22

    CAS  Google Scholar 

  90. Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskaya MV, Glazunov VP, Radchenko SV, Zvereva EV, Fedoreyev SA, Zhuravlev YN (2002) Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubiacordifolia callus cultures transformed with the rolB and rolC genes. J Biotechnol 97:213–221

    Article  CAS  Google Scholar 

  91. Vereshchagina YV, Bulgakov VP, Grigorchuk VP, Rybin VG, Veremeichik GN, Tchernoded GK, Gorpenchenko TY, Koren OG, Phan NHT, Minh NT, Chau LT, Zhuravlev YN (2014) The rolC gene increases caffeoylquinic acid production in transformed artichoke cells. Appl Microbiol Biotechnol 98(18):7773–7780

    Article  CAS  Google Scholar 

  92. Gabr A, Sytar O, Abdelrahman A, Smetanska I (2012) Production of phenolic acids and antioxidant activity in hairy root cultures of different explant sources of common buckwheat (Fagopyrum esculentum M). Aust J Basic Appl Sci 6:577–586. ISSN: 1991-8178

    CAS  Google Scholar 

  93. Ananga A, Georgiev V, Ochieng J, Phills B, Tsolova V (2013) Production of anthocyanins in grape cell cultures: a potential source of raw material for pharmaceutical, food, and cosmetic industries In: Poljuha D, Sladonja B (eds) The Mediterranean genetic code – grapevine and olive, INTECH Open Access Publisher: Rijeka, Croatia, pp 247–287. ISBN: 978-953-51-1067-5

    Google Scholar 

  94. Neumann K-H, Kumar A, Imani J (2009) Plant cell and tissue culture – a tool in biotechnology. Springer, Berlin/Heidelberg

    Google Scholar 

  95. Zhang ZZ, Li XX, Chu YN, Zhang MX, Wen YQ, Duan CQ, Pan QH (2012) Three types of ultraviolet irradiation differentially promote expression of shikimate pathway genes and production of anthocyanins in grape berries. Plant Physiol Biochem 57:74–83

    Article  CAS  Google Scholar 

  96. Dodds JH, Roberts LW (1985) Experiments in plant tissue culture, 2nd edn. Cambridge University Press, New York. 232 p

    Google Scholar 

  97. Suzuki M (1995) Enhancement of anthocyanin accumulation by high osmotic stress and low pH in grape cells (Vitis hybrids). J Plant Physiol 147(1):152–155

    Article  CAS  Google Scholar 

  98. Do CB, Cormier F (1990) Accumulation of anthocyanins enhanced by a high osmotic potential in grape (Vitis vinifera L.) cell suspensions. Plant Cell Rep 9:143–146

    Article  CAS  Google Scholar 

  99. Kastell A, Smetanska I, Ulrichs C, Cai Z, Mewis I (2013) Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Appl Biochem Biotechnol 169(2):624–635. ISSN: 0273-2289 (print version), ISSN: 1559-0291 (electronic version)

    Article  CAS  Google Scholar 

  100. Tabata H (2006) Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr Drug Targets 7(4):453–461

    Article  CAS  Google Scholar 

  101. Zenk MH (1978) The impact of plant cell cultures on industry. In: Thorpe EA (ed) Frontiers of plant tissue culture. The International Association of Plant Tissue Culture, Calgary, pp 1–14

    Google Scholar 

  102. Meyer HJ, van Staden J (1995) The in vitro production of an anthocyanin from callus cultures of Oxalis linearis. Plant Cell Tissue Organ Cult 40:55–58

    Article  CAS  Google Scholar 

  103. Gan RY, Kuang L, XR X, Zhang YA, Xia EQ, Song FL, Li HB (2010) Screening of natural antioxidants from traditional chinese medicinal plants associated with treatment of rheumatic disease. Molecules 15(9):5988–5997

    Article  CAS  Google Scholar 

  104. Szopa A, Ekiert H (2011) Lignans in Schisandra chinensis in vitro cultures. Pharmazie 66:633–634

    CAS  Google Scholar 

  105. Havkin-Frenkel D, Podstolski A, Knorr D (1996) Effect of light on vanillin precursors ormation by in vitro cultures of Vanilla planifolia. Plant Cell Tissue Organ Cult 45(2):133–136

    Article  CAS  Google Scholar 

  106. Cai Z, Riedel H, Saw NM, Kütük O, Mewis I, Reineke K, Knorr D, Smetanska I (2011) Effects of elicitors and high hydrostatic pressure on secondary metabolism of Vitis vinifera suspension culture. Process Biochem 6(46):1411–1416. Elsevier Science. ISSN: 1359-5113

    Article  CAS  Google Scholar 

  107. Sytar O, Cai Z, Marian B, Abhay K, Prasad MNV, Taran N, Smetanska I (2013) Foliar applied nickel on buckwheat (Fagopyrum esculentum) induced phenolic compounds as potential antioxidants. CLEAN – Soil, Air, Water 41(11):1129–1136. https://doi.org/10.1002/clen.201200512. Wiley-VCH Verlag, ISSN: 1863-0669

    Article  CAS  Google Scholar 

  108. Gabr A, AL-Sayed H, Smetanska I (2012) Effect of drought and salinity stress on total phenolic, flavonoids and flavonols contents and antioxidant activity in in vitro sprout cultures of common buckwheat (Fagopyrum esculentum M.) J Appl Sci Res 8:3934–3942

    Google Scholar 

  109. Ahmed AR, Gabr AMM, AL-Sayed HMA, Smetanska I (2012) Effect of drought and salinity stress on total phenolic, flavonoids and flavonols contents and antioxidant activity in in vitro sprout cultures of garden cress (Lepidium sativum). J Appl Sci Res 8:3934–3942. ISSN: 1819-544X

    CAS  Google Scholar 

  110. Hunaefi D, Smetanska I (2013) Tea fermentation effect on rosmarinic acid and antioxidant properties using selected in vitro sprout culture of Orthosiphon aristatus as a model study. 2:167. doi:https://doi.org/10.1186/2193-1801-2-167. SpringerPlus

  111. Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18(1):53–58

    Article  CAS  Google Scholar 

  112. Wu J, Lin L (2002) Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: induction of plant defense responses and secondary metabolite production. Appl Microbiol Biotechnol 59(1):51–57

    Article  CAS  Google Scholar 

  113. Schreiner M, Krumbein A, Knorr D, Smetanska I (2011) Enhancing glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate. J Agric Food Chem 59(4):1400–1405. https://doi.org/10.1021/jf103585s. ISSN: 0021-856123

    Article  CAS  Google Scholar 

  114. Saw NM, Riedel H, Cai Z, Kütük O, Smetanska I (2012) Impact of stress factors on anthocyanin synthesis in grape (Vitis vinifera) cell cultures. Plant Cell Tissue Organ Cult 108:47–54. https://doi.org/10.1007/s11240-011-0010-z. Springer, ISSN: 1573-5044

    Article  CAS  Google Scholar 

  115. Doernenburg H, Knorr D (1997) Challenges and opportunities for metabolite production from plant cell and tissue cultures. Food Technol 51:47–54

    Google Scholar 

  116. Gueven A, Knorr D (2011) Isoflavonoid production by soy plant callus suspension culture. J Food Eng 103(3):237–243

    Article  CAS  Google Scholar 

  117. Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104

    Article  CAS  Google Scholar 

  118. Zhang HC, Liu JM, HY L, Gao SL (2009) Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep 28:1205–1213

    Article  CAS  Google Scholar 

  119. Udomsuk L, Jarukamjorn K, Tanaka H, Putalun W (2011) Improved isoflavonoid production in Pueraria candollei hairy root cultures using elicitation. Biotechnol Lett 33:369–374

    Article  CAS  Google Scholar 

  120. Kende H, Zeevaart JAD (1997) The five – classical plant hormones. Plant Cell 9:1197–1210. https://doi.org/10.1105/tpc.9.7.1197

    Article  CAS  Google Scholar 

  121. Cai Z, Kastell A, Mewis I, Smetanska I (2011) Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Cult 9:1–9

    Google Scholar 

  122. Balasa A (2016) Stress response of plants, metabolite production due to pulsed electric fields. In: Miklavcic D (ed) Handbook of electroporation, pp 1–13. doi:https://doi.org/10.1007/978-3-319-26779-1_184-1, ISBN: 978-3-319-26779-1

  123. Abbasi BH, Tian CL, Murch SJ, Saxena PK, Liu CZ (2007) Light enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea. Plant Cell Rep 26:1367–1372

    Article  CAS  Google Scholar 

  124. Komaraiah P, Kishor PBK, Carlsson M, Magnusson KE, Mandenius CF (2005) Enhancement of anthraquinone accumulation in Morinda citrifolia suspension cultures. Plant Sci 168:1337–1344

    Article  CAS  Google Scholar 

  125. Santamaria AR, Mulinacci N, Valletta A, Innocenti M, Pasqua G (2011) Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia. J Agric Food Chem 59:9094–9101

    Article  CAS  Google Scholar 

  126. Ogata A, Tsuruga A, Matsuno M, Mizukami H (2004) Elicitor-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures: activities of rosmarinic acid synthase and the final two cytochromes P450-catalyzed hydroxylations. Plant Biotechnol 21(5):393–396

    Article  CAS  Google Scholar 

  127. Sumaryono W, Proksch P, Hartmann T, Nimtz M, Wray V (1991) Induction of rosmarinic acid accumulation in cell suspension cultures of Orthosiphon aristatus after treatment with yeast extract. Phytochemistry 30(10):3267–3271

    Article  CAS  Google Scholar 

  128. Giner J, Gimeno V, Barbosa-Cánovas GV, Martín O (2016) Effects of pulsed electric field processing on apple and pear polyphenoloxidases. Food Sci Technol Int 7(4):339–345

    Article  Google Scholar 

  129. Toepfl S, Heinz V, Knorr D (2007) History of pulsed electric field application. In: Lelieveld H, Notermans S, De Haan SW (eds) Preservation of food by pulsed electric fields. Woodhead, Cambridge, pp 9–39

    Google Scholar 

  130. Ravichandran K, Ahmed A, Knorr D, Smetanska I (2012) The effect of different processing methods on phenolic acids content and antioxidant activity of red beet. Food Res Int 48:16–20. Elsevier, Toronto, ISSN: 0963-9969

    Article  CAS  Google Scholar 

  131. Janositz A, Noack AK, Knorr D (2011) Pulsed electric fields and their impact on the diffusion characteristics of potato slices. LWT Food Sci Technol 44:1939–1945

    Article  CAS  Google Scholar 

  132. Toepfl S, Siemer C, Heinz V (2014) Effect of high-intensity electric field pulses on solid. In: Sun D (ed) Foods emerging technologies for food processing, Academic Press, UK, pp 147–154. ISBN: 9780124114791

    Google Scholar 

  133. Cai Z, Riedel H, Saw NM, Kütük O, Mewis I, Jäger H, Knorr D, Smetanska I (2010) Effects of pulsed electric field on secondary metabolism of Vitis vinifera L. cv. Gamay Fréaux suspension culture and exudates. Appl Biochem Biotechnol 164:443–453. https://doi.org/10.1007/s12010-010-9146-2. ISSN: 0273-2289

    Article  CAS  Google Scholar 

  134. Buckow R, Isbarn S, Knorr D, Heinz V, Lehmacher A (2008) Predictive model for inactivation of feline calicivirus, a norovirus surrogate, by heat and high hydrostatic pressure. Appl Environ Microbiol 74:1030–1038

    Article  CAS  Google Scholar 

  135. He X, Zou Y, Yoon WB, Park SJ (2011) Effects of probiotic fermentation on the enhancement of biological and pharmacological activities of Codonopsis lanceolata extracted by high pressure treatment. J Biosci Bioeng 112:188–193

    Article  CAS  Google Scholar 

  136. Balasubramaniam VM, Barbosa-Cánovas GV, Lelieveld HLM (2016) High pressure processing of food: principles, technology and applications. Springer-Verlag New York, 762 p

    Google Scholar 

  137. Wang JW, Zheng LP, Wu JY, Tan RX (2006) Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide Biol Chem 15:351–358

    Article  CAS  Google Scholar 

  138. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  Google Scholar 

  139. Cai Zh, Kastell A, Knorr D, Smetanska I. (2011) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep. doi:https://doi.org/10.1007/s00299-011-1165-0, ISSN: 0721-7714 (Print) 1432-203X (Online), Springer, Heidelberg

  140. Ye H, Huang LL, Chen SD, Zhong JJ (2004) Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis. Biotechnol Bioeng 88:788–795

    Article  CAS  Google Scholar 

  141. Zamboni A, Vrhovsek U, Kassemeyer HH, Mattivi F, Velasco R (2006) Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.) Vitis 45:63–68

    CAS  Google Scholar 

  142. Donnez D, Kim K-H, Antoine S, Conreux A, De Luca V, Jeandet P, Clément C, Courot E (2011) Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2 L stirred bioreactor. Process Biochem 46:1056–1062

    Article  CAS  Google Scholar 

  143. Fornara V, Onelli E, Sparvoli F, Rossoni M, Aina R, Marino G, Citterio S (2008) Localization of stilbene synthase in Vitis vinifera L. during berry development. Protoplasma 233:83–93

    Article  CAS  Google Scholar 

  144. Tassoni A, Fornalè S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905

    Article  CAS  Google Scholar 

  145. Ferri M, Dipalo SCF, Bagni N, Tassoni A (2011) Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chem 124:1473–1479

    Article  CAS  Google Scholar 

  146. Hunaefi D, Akumo D, Smetanska I (2013) Effect of fermentation on antioxidant properties of red cabbage. Food Biotechnol 27:66–85. https://doi.org/10.1080/08905436.2012.755694. ISSN: 0890-5436 print/1532-4249 online

    Article  CAS  Google Scholar 

  147. Hunaefi D, Akumo D, Riedel H, Smetanska I (2012) The effect of Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM fermentation on antioxidant properties of selected in vitro sprout culture of Orthosiphon aristatus (Java tea) as a model study. Antioxidants 1:4–32. https://doi.org/10.3390/antiox1010004. ISSN: 2076-3921

    Article  CAS  Google Scholar 

  148. Wu SC, Su YS, Cheng HY (2011) Antioxidant properties of Lactobacillus-fermented and non-fermented Graptopetalum paraguayense E. Walther at different stages of maturity. Food Chem 129:804–809

    Article  CAS  Google Scholar 

  149. Ng CC, Wang CY, Wang YP, Tzeng WS, Shyu YT (2011) Lactic acid bacterial fermentation on the production of functional antioxidant herbal Anoectochilus formosanus Hayata. J Biosci Bioeng 111:289–293

    Article  CAS  Google Scholar 

  150. Katina K, Laitila A, Juvonen R, Liukkonen KH (2007) Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol 24:175–186

    Article  CAS  Google Scholar 

  151. Lee IH, Hung LH, Chou CC (2008) Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. Int J Food Microbiol 121(2):150–156

    Article  CAS  Google Scholar 

  152. Cai YZ, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184

    Article  CAS  Google Scholar 

  153. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150

    Article  CAS  Google Scholar 

  154. Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT (2007) Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem 15:1749–1770

    Article  CAS  Google Scholar 

  155. Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–22

    Article  CAS  Google Scholar 

  156. Furuta S, Nishiba Y, Suda I (1997) Fluorometric assay for screening Antioxidative activity of vegetables. J Food Sci 62:526–528

    Article  CAS  Google Scholar 

  157. Mohdaly A, Smetanska I, Ramadan FR, Sarhanb MA, Mahmoud A (2011) Antioxidant potential of sesame (Sesamum indicum) cake extract in stabilization of sunflower and soybean oils. Ind Crop Prod 34:952–959. ISSN: 0926-6690, Elsevier

    Article  CAS  Google Scholar 

  158. Ravichandran K, Saw NM, Mohdaly A, Gabr AMM, Kastell A, Riedel H, Cai Zh, Knorr D, Smetanska I (2011) Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int, Special Issue on Stability of Phytochemicals. doi:https://doi.org/10.1016/j.foodres.2011.07.002, Elsevier, Toronto, ISSN: 0963-9969

  159. Fernandez-Orozco R, Frias J, Muñoz R, Zielinski H (2007) Fermentation as a bio-process to obtain functional soybean flours. J Agric Food Chem 55:8972–8979

    Article  CAS  Google Scholar 

  160. Mohdaly A, Sarhan MA, Mahmoud A, Mohamed FR, Smetanska I (2010) Antioxidant efficacy of potato peels and sugar beet pulp extracts in vegetable oils protection. Food Chem 123:1019–1026. Elsevier, ISSN: 0308-8146

    Article  CAS  Google Scholar 

  161. Debnath T, Park PJ, Nath NCD, Samad NB, Park HW, Lim BO (2011) Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chem 128(3):697–703

    Article  CAS  Google Scholar 

  162. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856

    Article  CAS  Google Scholar 

  163. Wang BC, He R, Li ZM (2010) The stability and antioxidant activity of anthocyanins from blueberry. Food Technol Biotechnol 48(1):42–49

    Google Scholar 

  164. Sytar O, Borankulova A, ShevchenkoY WA, Smetanska I (2016) Anti-oxidant activity and phenolics composition in Stevia rebaudiana plants of different origin. J Microbiol Biotechnol Food Sci 5(3):221–224

    Article  CAS  Google Scholar 

  165. Mohdaly AA, Sarhan MA, Smetanska I, Mahmoud A (2010) Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J Sci Food Agric 90:218–226

    Article  CAS  Google Scholar 

  166. Sytar O, Gabr AMM, Smetanska I, Kosyan A (2011) Pigments, phenolic contents and antioxidant activity of buckwheat seedlings under in vivo and in vitro conditions. Agrisafe. Climate change: challenges and opportunities in agriculture, pp 348–352

    Google Scholar 

  167. Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M (2002) Free radical properties of wheat extracts. J Agric Food Chem 50(6):1619–1624

    Article  CAS  Google Scholar 

  168. Hunaefi D, Gruda N, Riedel H, Akumo D, Smetanska I (2013d) Improvement in antioxidant activities by lactic acid bacteria. Food Biotechnol 4:279–302. https://doi.org/10.1080/08905436.2013.83670927. ISSN: 0890-5436 (Print), 1532-4249 (Online)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work would not have been possible without the support of my colleagues, providing together with me long-term research work on plant in vitro cultures. Special thank for the support and discussions to Dr. Ahmed Gabr, Dr. Hoda Mabrok, and Dr. Oksana Sytar as well as for fruitful collaboration of all members of our working group Dr. Dase Hunaefi, Dr. Zhenzhen Cai, Ms. Alexandra Wendt, Ms. Anja Kastell, Dr. Yaroslav Schevchenko, Dr. Heidi Riedel, Dr. Ravichandran Kavitha, Dr. Adel Mohdaly, Dr. Inga Mewis, Dr. Divine Akumo, Ms. Nay Min Saw, and Ms. Irene Hemmerich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Smetanska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Smetanska, I. (2018). Sustainable Production of Polyphenols and Antioxidants by Plant In Vitro Cultures. In: Pavlov, A., Bley, T. (eds) Bioprocessing of Plant In Vitro Systems. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-32004-5_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32004-5_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32004-5

  • Online ISBN: 978-3-319-32004-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics