Skip to main content

Radiative Plasma Heat Transfer

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 507 Accesses

Abstract

Radiation emitted by thermal plasmas and in particular by electric arcs is a well-known phenomenon. But radiation is also an important term of the internal energy balance of these plasmas, governing the temperature in the hottest regions and heating the external regions by absorption mechanisms. Hence, the measurement and calculation of the radiation terms are essential in plasma research and development. In this chapter, some definitions of various parameters or functions allowing to determine the emission and the absorption of radiation are presented. The main radiation laws useful for plasma conditions are also presented and used to compute the contribution of various physical mechanisms involved in radiation. It must be noted that the spectral description of this radiation is very complex, and for a given temperature, it may require up to one million spectral points.

The third and fourth sections of this chapter are devoted to the calculation of radiation transfer in thermal plasmas, with special emphasis on the notion of net emission coefficient which is a strong simplification very useful for thermal plasmas modeling, simple to use, and rather precise and able to take into account various parameters such as the temperature, the nature of the gas or vapor (in particular metal vapor), and the size of the plasma. Other interesting but more complex methods are presented, with specific results showing the advantages and drawbacks. Finally, in the last section, the role of radiation in practical conditions is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali AW, Griem HR (1965) Theory of resonance broadening of spectral lines by atom-atom impacts. Phys Rev 140:A1044

    Article  Google Scholar 

  • Aubrecht V, Bartlova M (2009) Net emission coefficients of radiation in air and SF6 thermal plasmas. Plasma Chem Plasma Process 29:131–147. doi:10.1007/s11090-008-9163-x

    Article  Google Scholar 

  • Aubrecht V, Lowke JJ (1994) Calculations of radiation transfer in SF6 plasmas using the method of partial characteristics. J Phys D Appl Phys 27:20662073

    Google Scholar 

  • Bakken JA, Gu L, Larsen H, Sevastyanenko VG (1997) Numerical modelling of electric arcs. J Eng Phys Thermophys 70:4

    Article  Google Scholar 

  • Bartlova M, Bogatyreva N, Aubrecht V (2015) Modelling radiative properties of SF6 arc plasma. Plasma Phys Technol 2(3):300–303

    Google Scholar 

  • Benilov M (2015) Physics of spotless mode on cathodes of metal vapor arcs. IEEE Int Conf Plasma Sc (ICOPS). doi:10.1109/PLASMA.2015.7179730. Antalya (Turkey)

  • Biberman LM, Norman GE (1960) Continuous spectra of atomic gases and plasma. Opt Spectrosc 8:230

    Google Scholar 

  • Billoux T (2013) Elaboration d’une base de données radiatives pour des plasmas de type CwHxOyNz et application au transfert radiatif pour des mélanges air, CO2 et CO-H2. PhD thesis, University of Toulouse (in French)

    Google Scholar 

  • Billoux T, Cressault Y, Gleizes A (2015) Net emission coefficient for CO-H2 thermal plasmas with the consideration of molecular systems. J Quant Spectrosc Radiat Transf 166:42–54

    Article  Google Scholar 

  • Bogatyreva N, Bartlova M, Aubrecht V (2011) J Phys Conf Ser 275:012009

    Article  Google Scholar 

  • Bouaziz M, Raynal G, Razafinimanana M, Gleizes A (1996) An experimental and theoretical study of the absorption of SF6 arc plasma radiation by cold SF6 gas. J Phys D Appl Phys 29:2885–2891

    Article  Google Scholar 

  • Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas – fundamentals and applications. Plenum Press, New York

    Book  Google Scholar 

  • Cabannes F, Chapelle J (1971) Spectroscopic plasma diagnostic, Chapter 7. In: Venugopalan M (ed) Reactions under plasma conditions, vol 1. Wiley-Interscience, New-York

    Google Scholar 

  • Chauveau S, Deron C, Perrin M-Y, Riviere P, Soufiani A (2003) Radiative transfer in LTE air plasmas for temperatures up to 15, 000 K. J Quant Spectrosc Radiat Transf 77:113–130

    Article  Google Scholar 

  • Condon E, Shortley G (1935) The theory of atomic spectra. Cambridge University Press, Cambridge. ISBN 0-521-09209-4

    Google Scholar 

  • Cowan RD (1981) The theory of atomic structure and spectra. University of California Press, Berkeley. ISBN 0-520-03821-5

    Google Scholar 

  • Cressault Y, Gleizes A (2013) Thermal plasma properties for Ar-Al, Ar-Fe and Ar-Cu mixtures used in welding plasmas processes. Part I: data tables of net emission coefficients. J Phys D Appl Phys 46:415206. (16pp)

    Article  Google Scholar 

  • Cressault Y, Hannachi R, Teulet P, Gleizes A, Gonnet J-P, Battandier J-Y (2008) Influence of metallic vapours on the properties of air thermal plasmas. Plasma Sources Sci Technol 17:035016

    Article  Google Scholar 

  • Cressault Y, Rouffet M-E, Gleizes A, Meillot E (2010) Net emission coefficient of Ar-H2-He thermal plasmas at atmospheric pressure. J Phys D Appl Phys 43:335204

    Article  Google Scholar 

  • Cressault Y, Gleizes A, Riquel G (2012) Properties of air-aluminium thermal plasmas. J Phys D Appl Phys 45:265202. (12pp)

    Article  Google Scholar 

  • Cressault Y, Bauchire J-M, Hong D, Rabat H, Riquel G, Gleizes A (2015) Radiation of long and high power arcs. J Phys D Appl Phys 48:415201. (16pp)

    Article  Google Scholar 

  • Deron C, Riviere P, Perrin M-Y, Soufiani A (2004) 15th international conference on gas discharges and their applications (GD2004). Toulouse 1:137

    Google Scholar 

  • Deron C, Riviere P, Perrin M-Y, Soufiani A (2006) Coupled radiation, conduction, and Joule heating in argon thermal plasmas. J Thermophys Heat Transf 20:211–219

    Article  Google Scholar 

  • Drawin HW, Emard F (1973) Optical escape factors for bound-bound and free-bound radiation from plasma. I. Constant source function. Beitrag Plasmaphysik 13:143–168

    Article  Google Scholar 

  • Drayson SR (1976) Rapid computation of the Voigt profile. J Quant Spectrosc Radiat Transf 16:611

    Article  Google Scholar 

  • Eby SD, Trepanier J-Y, Zhang XD (1998) Modelling radiative transfer in SF6 circuit-breaker arcs with the P-1 approximation. J Phys D Appl Phys 31(13):1578–1588

    Article  Google Scholar 

  • Ernst KA, Kopainsky JG, Maecker HH (1973) The energy transport, including emission and absorption, in nitrogen arcs of different radii. IEEE Trans Plasma Sci PS-1(4):1–16

    Google Scholar 

  • Fagiano L, Gati R (2015) Order reduction of the radiative heat transfer model for the simulation of plasma arcs. arXiv: 1504.06204

    Google Scholar 

  • Freton P, Gonzalez J-J, Gleizes A (2000) Comparison between a two-and a three-dimensional arc plasma configuration. J Phys D Appl Phys 33:2442–2452

    Article  Google Scholar 

  • Gautier M, Cressault Y, Takali S, Rohani V, Fulcheri L (2015) Heat and mass transfer modelling in a three-phase AC hydrogen plasma torch: influence of radiation and very high pressure. In: ISPC 22 – 22nd international symposium on plasma chemistry, Antwerp

    Google Scholar 

  • Gleizes A, Gongassian M, Rahmani B (1989) Continuum absorption coefficient in SF6 and SF6-N2 mixtures plasmas. J Phys D Appl Phys 22:83–89

    Article  Google Scholar 

  • Gleizes A, Rahmani B, Gonzalez J-J, Liani B (1991) Calculation of net emission coefficient in N2, SF6 and SF6-N2 arc plasmas. J Phys D 24:1300–1309

    Article  Google Scholar 

  • Gleizes A, Gonzalez J-J, Razafinimanana M, Robert T (1992) Influence of radiation on temperature field calculation in SF6 arcs. Plasma Sources Sci Technol 1:135–140

    Article  Google Scholar 

  • Gleizes A, Erraki A, Naghizadeh-Kashani Y, Riad H (1997) Calculation of mean absorption coefficients for thermal plasmas. Applications to air, methane and argon-iron. In: XXIII ICPIG international conference on phenomena in ionized gases, Toulouse, II-106, July 1997

    Google Scholar 

  • Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modelling. J Phys D Appl Phys 38:R153–R183. (topical review)

    Article  Google Scholar 

  • Gongassian M, Schlüter D (1986) Semiempirical calculation of photoionization cross sections for the first excited levels of F I. Z Phys D 3:7–10

    Article  Google Scholar 

  • Gonzalez J-J, Gleizes A, Proulx P, Boulos M (1993) Mathematical modeling of a free-burning arc in the presence of metal vapor. J Appl Phys 74:3065–3070

    Article  Google Scholar 

  • Gonzalez J-J, Belhaouari J-B, Gleizes A (1996) Influence of demixing effect on the temperature in wall-stabilized SF6 arcs. J Phys D Appl Phys 29:1520–1524

    Article  Google Scholar 

  • Gonzalez J-J, Freton P, Reichert F, Petchanka A (2015) PTFE vapor contribution to pressure changes in high-voltage circuit breakers. IEEE Trans Plasma Sci 43:2703

    Article  Google Scholar 

  • Griem HR (1974) Spectral line broadening by plasmas. Academic, New York

    Google Scholar 

  • Griem HR, Baranger M, Kolb AC, Oertel G (1962) Stark broadening of neutral helium lines in a plasma. Phys Rev 125(1):177

    Article  MATH  Google Scholar 

  • Herzberg G (1979) (1945) Atomic spectra and atomic structure. Dover, New York. ISBN 0-486-60115-3

    Google Scholar 

  • Herzberg G (1989a) Molecular spectra and molecular structure: I. Spectra of diatomic molecules. Krieger Publisher Company, Malabar, Florida. ISBN 0-89464-268-5

    Google Scholar 

  • Herzberg G (1989b) Molecular spectra and molecular structure: II. Infrared and Raman spectra of polyatomic molecules. Krieger Publishing Company, Malabar, Florida. ISBN 0-89464-269-3

    Google Scholar 

  • Herzberg G (1989c) Molecular spectra and molecular structure: III. Electronic spectra and electronic structure of polyatomic molecules. Krieger Publisher Company, Malabar, Florida. ISBN 0-89464-270-7

    Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird BR (1964) Molecular theory of gases and liquids. Wiley, New York

    MATH  Google Scholar 

  • Hofsaess D (1977) Photoabsorption in alkali and alkaline earth elements calculated by the Scaled Thomas Fermi method. Z Physik A 281:1–13

    Article  Google Scholar 

  • Hofsaess D (1979) Photoionization cross sections calculated by the scaled Thomas-Fermi method (hv ≤ 50 eV). At Data Nucl Data Tables 24:285–321

    Article  Google Scholar 

  • Hsu K, Etemadi K, Pfender E (1983) Study of the free-burning high-intensity argon arc. J Appl Phys 54:293

    Google Scholar 

  • Jacquinet-Husson N, Crepeau L, Armante R, Boutammine C, Chedin A, Scott NA, Crevoisier C, Capelle V, Boone C, Poulet-Crovisier N, Barbe A, Campargue A, Benner DC, Benilan Y, Bezard B, Boudon V, Brown LR, Coudert LH, Coustenis A, Dana V, Devi VM, Fally S, Fayt A, Flaud JM, Goldman A, Herman M, Harris GJ, Jacquemart D, Jolly A, Kleiner I, Kleinbohl A, Kwabia Tchana F, Lavrentieva N, Lacome N, Xu LH, Lyulin OM, Mandin JY, Maki A, Mikhailenko S, Miller CE, Mishina T, Moazzen-Ahmadi N, Müller HSP, Nikitin A, Orphal J, Perevalov V, Perrin A, Petkie DT, PredoiCross A, Rinsland CP, Remedios J, Rotger M, Smith MAH, Sung K, Tashkun S, Tennyson J, Toth RA, Vandaele AC, Auwera Vander J (2011) The 2011 edition of the GEISA spectroscopic database. J Quant Spectrosc Radiat Transf 112(15):2395–2445

    Article  Google Scholar 

  • Jan C, Cressault Y, Gleizes A, Bousoltane K (2014) Calculation of radiative properties of SF6-C2F4 thermal plasmas-application to radiative transfer in high-voltage circuit breakers modelling. J Phys D Appl Phys 47:015204

    Article  Google Scholar 

  • Jones RT, Reynolds QG, Curr TR, Sager D (2011) Some myths about DC arc furnaces. Southern African Pyrometallurgy. In: Jones RT, den Hoed P (eds), available at http://www.mintek.co.za/Pyromet/Files/2011Jones1.pdf

  • Kahhali N, Rivière P, Perrin M-Y, Gonnet J-P, Soufiani A (2010) Effects of radiative transfer modelling on the dynamics of a propagating electrical discharge. J Phys D Appl Phys 43:425204. doi:10.1088/0022-3727/43/42/425204

    Article  Google Scholar 

  • Kepple P, Griem HR (1968) Improved Stark profile calculations for the hydrogen lines Hα, Hβ, Hγ, and Hδ. Phys Rev 173:317

    Article  Google Scholar 

  • Kloc P, Aubrecht V, Bartlova M, Coufal O, Rümpler C (2015) On the selection of integration intervals for the calculation of mean absorption coefficients. Plasma Chem Plasma Process 35:1097–1110. doi:10.1007/s11090-015-9648-3

    Article  Google Scholar 

  • Konjevic R, Konjevic N (1986) Stark broadening and shift of neutral copper spectral lines. FIZIKA 18:327

    Google Scholar 

  • Kurucz RL (1995) Atomic line data (R.L. Kurucz and B. Bell) Kurucz CD-ROM No. 23. Smithsonian Astrophysical Observatory, Cambridge, MA. Available online at http://cfa-www.harvard.edu/amp/ampdata/kurucz23/sekur.html. Accessed May 2016

    Google Scholar 

  • Lacombe J-G, Delannoy Y, Trassy (2008) The role of radiation in modelling of argon inductively coupled plasmas at atmospheric pressure J. Phys D Appl Phys 41(16):165204. doi:10.1088/0022-3727/41/16/165204

    Google Scholar 

  • Lago F, Gonzalez J-J, Freton P, Gleizes A (2004) A numerical modelling of an electric arc and its interaction with the anode: part I the two dimensional model. J Phys D Appl Phys 37:883–897

    Article  Google Scholar 

  • Lamet J-M, Babou Y, Rivière P, Perrin M-Y, Soufiani A (2008) Radiative transfer in gases under thermal and chemical nonequilibrium conditions: application to earth atmospheric re-entry. J Quant Spectr Radiat Transfer 109:235–244

    Article  Google Scholar 

  • Lamet J-M, Rivière P, Perrin M-Y, Soufiani A (2010) Narrow-band model for nonequilibrium air plasma radiation. J Quant Spectrosc Radiat Transf 111:87

    Article  Google Scholar 

  • Laux C, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12(2):125; and online http://www.specair-radiation.net/. Accessed May 2016

    Article  Google Scholar 

  • Letchworth KL, Benner DC (2007) Rapid and accurate calculation of the Voigt function. J Quant Spectrosc Radiat Transf 107:173

    Article  Google Scholar 

  • Liebermann RW, Lowke JJ (1976) Radiation emission coefficients for sulfur hexafluoride arc plasmas. J Quant Spectrosc Radiat Transf 16:253

    Article  Google Scholar 

  • Lowke JJ (1974) Predictions of arc temperature profiles using approximate emission coefficients for radiation losses. J Quant Spectrosc Radiat Transf 14:111–122

    Article  Google Scholar 

  • Lowke JJ, Mitchell D (1983) Net emission coefficients of radiation in sulphur hexafluoride plasmas. XVI ICPIG Dusseldorf 502

    Google Scholar 

  • Luque J, Crosley DR (1999) LIFBASE database and spectral simulation program (version 1.5). Presented at the SRI international report MP 99-009

    Google Scholar 

  • Menart J, Heberlein J, Pfender (1996) E line-by-line method of calculating emission coefficients for thermal plasmas consisting of monoatomic species. J Quant Spectrosc Radiat Transf 56:377–398

    Article  Google Scholar 

  • Menart J, Heberlein J, Pfender E (1999) Theoretical radiative transport results for a free-burning arc using a line-by-line technique. J Phys D Appl Phys 3:55–63

    Article  Google Scholar 

  • Modest MF (1993) Radiative heat transfer. Mc-Graw-Hill International Editions, New York. ISBN 0-07-112742-9

    Google Scholar 

  • Mostaghimi J, Proulx P, Boulos M (1984) Parametric study of the flow and temperature fields in an inductively coupled r.f. plasma torch. Plasma Chem Plasma Proc 4(3):199–217

    Article  Google Scholar 

  • Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D: Appl Phys 43:434001

    Article  Google Scholar 

  • Naghizadeh-Kashani Y (1999) Calcul du transfert radiatif dans un plasma d’air. PhD thesis, University Paul Sabatier, Toulouse (in French)

    Google Scholar 

  • Naghizadeh-Kashani Y, Gleizes A (2001) Radiative transfer in oxygen, nitrogen and air thermal plasmas between 300 and 30 000 K. Progress in plasma processing of materials. Begell House, New York, pp 427–432

    Google Scholar 

  • Naghizadeh-Kashani Y, Cressault Y, Gleizes A (2002) Net emission coefficient of air thermal plasmas. J Phys D Appl Phys 35:2925–2934

    Article  Google Scholar 

  • Nordborg H, Iordanidis A (2008) Self-consistent radiation based modelling of electric arcs: I. efficient radiation approximations. J Phys D Appl Phys 41:135205. doi:10.1088/0022-3727/41/13/135205

    Article  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  • Paul K, Takemura T, Hiramoto T, Erraki A, Dawson F, Zissis G, Gonzalez J-J, Gleizes A, Benilov M, Lavers JD (2006) Self-consistent model of HID lamp for design applications. IEEE Trans Plasma Sci 34:N4

    Article  Google Scholar 

  • Perrin M-Y, Colonna G, D’Ammando G, Pietanza LD, Riviere P, Soufani A, Surzhikov S (2014) Radiation models and radiation transfer in hypersonics. The Open Plasma Phys J 7(Suppl 1: M8):114–126

    Article  Google Scholar 

  • Peyrou B, Chemartin L, Lalande P, Chéron B, Rivière P, Perrin M-Y, Soufiani A (2012) Radiative properties and radiative transfer in high pressure thermal air plasmas. J Phys D Appl Phys 45:455203. (12pp)

    Article  Google Scholar 

  • Ralchenko Y, Kramida AE, Reader J, NIST ASD team (2008) NIST atomic spectra database (version 3.1.5). National Institute of Standards and Technology, Gaithersburg. Available online at http://physics.nist.gov/asd3. Accessed May 2016

  • Randrianandraina HZ, Cressault Y, Gleizes A (2010) Radiative transfer calculation in SF6 thermal plasmas. In: International conference on gas discharges and their applications, GD2010, Greifswald

    Google Scholar 

  • Randrianandraina HZ, Cressault Y, Gleizes A (2011) Improvements of radiative transfer for SF6 thermal plasmas. J Phys D Appl Phys 44:194012

    Article  Google Scholar 

  • Raynal G, Gleizes A (1995) Radiative transfer calculation in SF6 arc plasmas using partial characteristics. Plasma Sources Sci Technology 4(1):152–160

    Article  Google Scholar 

  • Raynal G, Vergne P-J, Gleizes A (1995) Radiative transfer in SF6 and SF6-Cu arcs. J Phys D Appl Phys 28:508–515

    Article  Google Scholar 

  • Reichert F, Gonzalez J-J, Freton P (2012) Modelling and simulation of radiative energy transfer in high-voltage circuit breakers. J Phys D Appl Phys 45:375201. (11pp)

    Article  Google Scholar 

  • Riviere P, Soufiani A, Perrin M-Y, Riad H, Gleizes A (1996) Air mixture radiative property modelling in the temperature range 10 000–40 000 K. J Quant Spectrosc Radiat Transf 56:29–45

    Article  Google Scholar 

  • Rothman LS, Gordon IE, Barber RJ, Dothe H, Gamache RR, Goldman A, Perevalov VI, Tashkun SA, Tennyson J (2010) HITEMP, the high-temperature molecular spectroscopic database. J Quant Spectrosc Radiat Transf 111:2139–2150

    Article  Google Scholar 

  • Rothman LS, Gordon IE, Babikov Y, Barbe A, Benner DC, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert L, Devi VM, Drouin BJ, Fayt A, Flaud JM, Gamache RR, Harrison J, Hartmann JM, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, Le Roy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Muller HSP, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith MAH, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC, Tyuterev VG, Wagner G (2013) The HITRAN 2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 130(Special issue):4–50. (2013) The HITRAN 2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 130(Special issue):4–50

    Article  Google Scholar 

  • Sabsabi M, Cielo P, Gleizes A (1995) Characterization of an aluminum plasma induced by a YAG laser in air at atmospheric pressure. In: XXII ICPIG international conference on phenomena in ionized gases, Hoboken, August 1995, p 163

    Google Scholar 

  • Sarroukh H, Aubes M, Zissis G, Damelincourt J-J (1999) On the radiation trapping calculation in discharge lamps, ICOPS’99, Monterey

    Google Scholar 

  • Seeger M (2015) Perspectives on research on high voltage gas circuit breakers. Plasma Chem Plasma Process 35:527–541

    Article  Google Scholar 

  • Sevast’yanenko V (1979) Radiation transfer in a real spectrum. Integration over frequency. J Eng Phys 36(138–148):1979

    Google Scholar 

  • Sevast’yanenko V (1980) Radiation transfer in a real spectrum. Integration with respect to the frequency and angles. J Eng Phys 38:173–179

    Article  Google Scholar 

  • Shayler PJ, Fang MTC (1978) Radiation transport in wall-stabilised nitrogen arcs. J Phys D Appl Phys 11:1743–1756

    Article  Google Scholar 

  • Siegel R, Howell J (2002) Thermal radiation heat transfer, 4th edn. Taylor and Francis Ed., New York. ISBN 1-56032-839-8

    Google Scholar 

  • Soloukhin RI (1986) Handbook of radiative heat transfer in high-temperature gases. Hemisphere Publishing Corporation, Washington, DC. Distribution: Springer

    Google Scholar 

  • Soucasse L, Rivière P, Soufiani A (2013) Monte Carlo methods for radiative transfer in quasi-isothermal participating media. J Quant Spectrosc Radiat Transf 128:34–42. ISSN 0022-4073

    Google Scholar 

  • Strachan DC (1973) Radiation losses from high-current free-burning arcs between copper electrodes. J Phys D Appl Phys 6:1712

    Article  Google Scholar 

  • Takali S, Cressault Y, Rohani V, Fabry F, Cauneau F, Fulcheri L (2015) CFD flow modelling inside a three phase AC plasma torch working with air: influence of air radiation. In: ISPC 22 – 22nd international symposium on plasma chemistry, Antwerp

    Google Scholar 

  • Tashkun SA, Perevalov VI (2011) CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank. J Quant Spectrosc Radiat Transf 112:1403–1410

    Article  Google Scholar 

  • Teulet P, Girard L, Razafinimanana M, Gleizes A, Bertrand P, Camy-Peyret F, Baillot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: II. Arc-material interaction. J Phys D Appl Phys 39:1557–1573

    Article  Google Scholar 

  • Traving G (1968) Plasma diagnostics. In: Lochte-Holtgreven W (ed) In reactions under plasma conditions. Venugopalan M (ed). Wiley, New York

    Google Scholar 

  • Verite J-C, Boucher T, Comte A, Delalondre C, Robin-Jouan P, Serres E, Texier V, Barrault M, Chevrier P, Fievet C (1995) Arc modelling in SF6 circuit breakers. IEE Proc Sci Meas Technol 142:189

    Article  Google Scholar 

  • Walkup R, Stewart B, Pritchard DE (1984) Collisional line broadening due to van der Waals potentials. Phys Rev A 29:169

    Article  Google Scholar 

  • Weast RC (1987) Handbook of chemistry and physics, 67th edn. CRC Press, Boca Raton

    Google Scholar 

  • Wells RJ (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J Quant Spectrosc Radiat Transf 62:29

    Article  Google Scholar 

  • Yokomizu Y, Matsumura T (2008) Radiation power of SF6 arc in current range from 500 to 20 000A at pressures of 0.1 and 0.4MPa. J Phys D Appl Phys 41:25203

    Article  Google Scholar 

  • Zhang JF, Fang MTC (1988) A comparative study of SF6 and N2 arcs in accelerating flow. J Phys D Appl Phys 21:730–736

    Article  Google Scholar 

  • Zhang JF, Fang MTC, Newland DB (1987) Theoretical investigation of a 2 kA DC nitrogen arc in a supersonic nozzle. J Phys D Appl Phys 20:668

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Gleizes .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Gleizes, A. (2017). Radiative Plasma Heat Transfer. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics