Skip to main content

Wound Care: Maggot Debridement Therapy

  • Chapter
  • First Online:
Critical Limb Ischemia
  • 2491 Accesses

Abstract

Maggot debridement therapy (MDT) has long been used to treat various wounds or ulcers. Although the mechanisms underlying MDT are not completely understood, laboratory studies have clarified the various effects of larval secretions/excretions. The most noticeable change in maggot-treated wounds is debridement. Other characteristics include microbial death (disinfection) and accelerated wound healing (growth stimulation). Recently, it has been reported that the amino acid-like compounds present in maggot excretions/secretions may mediate wound healing by stimulating angiogenesis. In the clinical setting, MDT for critical limb ischemia has been reported to lead to an increase in skin perfusion pressure, which serves as an index of peripheral circulation in the skin and subcutaneous tissue. Laboratory and clinical findings to date suggest that ischemic ulcer is a good candidate for MDT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baer WS. The classic: the treatment of chronic osteomyelitis with the maggot (larva of the blow fly). 1931. Clin Orthop Relat Res. 2011;469(4):920–44.

    Article  PubMed  Google Scholar 

  2. Sherman RA, Pechter EA. Maggot therapy: a review of the therapeutic applications of fly larvae in human medicine, especially for treating osteomyelitis. Med Vet Entomol. 1988;2(3):225–30.

    Article  CAS  PubMed  Google Scholar 

  3. Sherman RA. Mechanisms of maggot-induced wound healing: what do we know, and where do we go from here? Evid Based Complement Alternat Med. 2014;2014:592419.

    Google Scholar 

  4. Sherman RA. Maggot therapy for foot and leg wounds. Int J Low Extrem Wounds. 2002;1(2):135–42.

    Article  PubMed  Google Scholar 

  5. Nordstrom A, Hansson C, Karlstrom L. Larval therapy as a palliative treatment for severe arteriosclerotic gangrene on the feet. Clin Exp Dermatol. 2009;34(8):e683–5.

    Article  CAS  PubMed  Google Scholar 

  6. Maeda TM, Kimura CK, Takahashi KT, Ichimura KI. Increase in skin perfusion pressure after maggot debridement therapy for critical limb ischaemia. Clin Exp Dermatol. 2014;39(8):911–4.

    Google Scholar 

  7. Bexfield A, Bond AE, Morgan C, Wagstaff J, Newton RP, Ratcliffe NA, et al. Amino acid derivatives from Lucilia sericata excretions/secretions may contribute to the beneficial effects of maggot therapy via increased angiogenesis. Br J Dermatol. 2010;162(3):554–62.

    Article  CAS  PubMed  Google Scholar 

  8. Mumcuoglu KY, Miller J, Mumcuoglu M, Friger M, Tarshis M. Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae). J Med Entomol. 2001;38(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  9. Mumcuoglu KY. Clinical applications for maggots in wound care. Am J Clin Dermatol. 2001;2(4):219–27.

    Article  CAS  PubMed  Google Scholar 

  10. Dumville JC, Worthy G, Bland JM, Cullum N, Dowson C, Iglesias C, et al. Larval therapy for leg ulcers (VenUS II): randomised controlled trial. BMJ. 2009;338:b773.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cazander G, Pritchard DI, Nigam Y, Jung W, Nibbering PH. Multiple actions of Lucilia sericata larvae in hard-to-heal wounds: larval secretions contain molecules that accelerate wound healing, reduce chronic inflammation and inhibit bacterial infection. Bioessays. 2013;35(12):1083–92.

    Article  CAS  PubMed  Google Scholar 

  12. Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R. Extending the TIME concept: what have we learned in the past 10 years?(*). Int Wound J. 2012;9 Suppl 2:1–19.

    Article  PubMed  Google Scholar 

  13. James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37–44.

    Article  PubMed  Google Scholar 

  14. Cazander G, van de Veerdonk MC, Vandenbroucke-Grauls CM, Schreurs MW, Jukema GN. Maggot excretions inhibit biofilm formation on biomaterials. Clin Orthop Relat Res. 2010;468(10):2789–96.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Harris LG, Bexfield A, Nigam Y, Rohde H, Ratcliffe NA, Mack D. Disruption of Staphylococcus epidermidis biofilms by medicinal maggot Lucilia sericata excretions/secretions. Int J Artif Organs. 2009;32(9):555–64.

    CAS  PubMed  Google Scholar 

  16. Harris LG, Nigam Y, Sawyer J, Mack D, Pritchard DI. Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation. Appl Environ Microbiol. 2013;79(4):1393–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trouw LA, Daha MR. Role of complement in innate immunity and host defense. Immunol Lett. 2011;138(1):35–7.

    Article  CAS  PubMed  Google Scholar 

  18. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171(3):715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cazander G, Schreurs MW, Renwarin L, Dorresteijn C, Hamann D, Jukema GN. Maggot excretions affect the human complement system. Wound Repair Regen. 2012;20(6):879–86.

    Article  PubMed  Google Scholar 

  20. van der Plas MJ, van der Does AM, Baldry M, Dogterom-Ballering HC, van Gulpen C, van Dissel JT, et al. Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes Infect/Inst Pasteur. 2007;9(4):507–14.

    Article  Google Scholar 

  21. van der Plas MJ, van Dissel JT, Nibbering PH. Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type. PloS one. 2009;4(11), e8071.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Horobin AJ, Shakesheff KM, Pritchard DI. Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon the migration of human dermal fibroblasts over a fibronectin-coated surface. Wound Repair Regen. 2005;13(4):422–33.

    Article  PubMed  Google Scholar 

  23. Horobin AJ, Shakesheff KM, Pritchard DI. Promotion of human dermal fibroblast migration, matrix remodelling and modification of fibroblast morphology within a novel 3D model by Lucilia sericata larval secretions. J Invest Dermatol. 2006;126(6):1410–8.

    Article  CAS  PubMed  Google Scholar 

  24. Wang SY, Wang K, Xin Y, Lv DC. Maggot excretions/secretions induces human microvascular endothelial cell migration through AKT1. Mol Biol Rep. 2010;37(6):2719–25.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Wang S, Diao Y, Zhang J, Lv D. Fatty acid extracts from Lucilia sericata larvae promote murine cutaneous wound healing by angiogenic activity. Lipids Health Dis. 2010;9:24.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol. 1994;55(3):410–22.

    CAS  PubMed  Google Scholar 

  27. Grassberger M, Fleischmann W. The biobag – a new device for the application of medicinal maggots. Dermatology. 2002;204(4):306.

    Article  PubMed  Google Scholar 

  28. Becker F, Robert-Ebadi H, Ricco JB, Setacci C, Cao P, de Donato G, et al. Chapter I: Definitions, epidemiology, clinical presentation and prognosis. Eur J Vasc Endovasc Surg. 2011;42 Suppl 2:S4–12.

    Article  PubMed  Google Scholar 

  29. Ubbink DT, Vermeulen H. Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia. Cochrane Database Syst Rev. 2013;2, CD004001.

    Google Scholar 

  30. Kavros SJ, Delis KT, Turner NS, Voll AE, Liedl DA, Gloviczki P, et al. Improving limb salvage in critical ischemia with intermittent pneumatic compression: a controlled study with 18-month follow-up. J Vasc Surg. 2008;47(3):543–9.

    Article  PubMed  Google Scholar 

  31. Igari K, Toyofuku T, Uchiyama H, Koizumi S, Yonekura K, Kudo T, et al. Maggot debridement therapy for peripheral arterial disease. Ann Vasc Dis. 2013;6(2):145–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Malvezzi L, Castronuovo Jr JJ, Swayne LC, Cone D, Trivino JZ. The correlation between three methods of skin perfusion pressure measurement: radionuclide washout, laser Doppler flow, and photoplethysmography. J Vasc Surg. 1992;15(5):823–9. Discussion 9–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maeda, T., Kimura, C. (2017). Wound Care: Maggot Debridement Therapy. In: Dieter, R., Dieter, Jr, R., Dieter, III, R., Nanjundappa, A. (eds) Critical Limb Ischemia. Springer, Cham. https://doi.org/10.1007/978-3-319-31991-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31991-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31989-6

  • Online ISBN: 978-3-319-31991-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics