Skip to main content

Doping Effect on Melting Temperature for Gold–Copper Bimetallic Nanocluster and Dependency on Bulk Melting Temperature to the Potential Model

  • Conference paper
  • First Online:
Crystallizing Ideas – The Role of Chemistry

Abstract

Molecular dynamics (MD) simulation has been done for the melting temperature of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. The trend of melting temperature for gold–copper bimetallic nanocluster is not the same as the melting temperature for gold–copper bulk alloy. MD simulation shows that the melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential within the tight-binding second moment approximation as new application potential model regarding the melting temperature for gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential and quantum Sutton–Chen potential models.

This chapter book is dedicated to my parents due to their endless support and encouragement

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  2. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Google Scholar 

  3. Huang S-P, Mainardi DS, Balbuena PB (2003) Structure and dynamics of graphite-supported bimetallic nanoclusters. Surf Sci 545:163–179

    Article  CAS  Google Scholar 

  4. Bracey CL, Ellis PR, Hutchings GJ (2009) Application of copper–gold alloys in catalysis: current status and future perspectives. Chem Soc Rev 38:2231–2243

    Article  CAS  Google Scholar 

  5. Della Pina C, Falletta E, Prati L, Rossi M (2008) Selective oxidation using gold. Chem Soc Rev 37:2077–2095

    Article  CAS  Google Scholar 

  6. Yoo W-J, Li C-J (2007) Copper-catalyzed oxidative esterification of alcohols with aldehydes activated by Lewis acids. Tetrahedron Lett 48:1033–1035

    Article  CAS  Google Scholar 

  7. Liu X, Wang A, Wang X, Mou C-Y, Zhang T (2008) Au–Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Commun 27:3187–3189

    Google Scholar 

  8. Zhang L (2012) A molecular dynamics study of thermal behavior of melting an Au54Cu1 cluster. Procedia Eng 36:207–211

    Article  CAS  Google Scholar 

  9. Zhang L, Zhang C-B, Qi Y (2008) Local structure changes of 54-, 55-, 56-atom copper clusters on heating. Phys Lett A 372:2874–2880

    Article  CAS  Google Scholar 

  10. Huang W, Ji M, Dong C-D, Gu X, Wang L-M, Gong XG, Wang L-S (2008) Relativistic effects and the unique low-symmetry structures of gold nanoclusters. ACS Nano 2:897–904

    Article  CAS  Google Scholar 

  11. Gao Y, Shao N, Pei Y, Zeng XC (2010) Icosahedral crown gold nanocluster Au43Cu12 with high catalytic activity. Nano Lett 10:1055–1062

    Google Scholar 

  12. Häkkinen H, Moseler M, Kostko O, Morgner N, Hoffmann MA, Issendorff BV (2004) Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity. Phys Rev Lett 93:093401

    Article  Google Scholar 

  13. Xing X, Danell RM, Garzón IL, Michaelian K, Blom MN, Burns MM, Parks JH (2005) Size-dependent fivefold and icosahedral symmetry in silver clusters. Phys Rev B 72:081405

    Article  Google Scholar 

  14. Cheng D, Huang S, Wang W (2006) Thermal behavior of core-shell and three-shell layered clusters: melting of Cu1Au54 and Cu12Au43. Phys Rev B 74:064117

    Article  Google Scholar 

  15. Sankaranarayanan SK, Bhethanabotla VR, Joseph B (2005) Molecular dynamics simulation study of the melting of Pd–Pt nanoclusters. Phys Rev B 71:195415

    Article  Google Scholar 

  16. Rodrıguez-López J, Montejano-Carrizales J, José-Yacamán M (2003) Molecular dynamics study of bimetallic nanoparticles: the case of AuxCuy alloy clusters. Appl Surf Sci 219:56–63

    Article  Google Scholar 

  17. Yin J, Shan S, Yang L, Mott D, Malis O, Petkov V, Cai F, Shan Ng M, Luo J, Chen BH (2012) Gold–copper nanoparticles: nanostructural evolution and bifunctional catalytic sites. Chem Mater 24:4662–4674

    Article  CAS  Google Scholar 

  18. Taherkhani F, Akbarzadeh H, Abroshan H, Fortunelli A (2012) Dependence of self-diffusion coefficient, surface energy, on size, temperature, and Debye temperature on size for aluminum nanoclusters. Fluid Phase Equilib 335:26–31

    Article  CAS  Google Scholar 

  19. Huang S-P, Balbuena PB (2002) Melting of bimetallic Cu–Ni nanoclusters. J Phys Chem B 106:7225–7236

    Google Scholar 

  20. Taherkhani F, Rezania H (2012) Temperature and size dependency of thermal conductivity of aluminum nanocluster. J Nanopart Res 14:1–8

    Article  Google Scholar 

  21. Negreiros F, Taherkhani F, Parsafar G, Fortunelli A (2012) Kinetics of chemical ordering in a Ag–Pt nanoalloy particle via first-principles simulations. J Chem Phys 137:194302

    Article  CAS  Google Scholar 

  22. Mejía-Rosales SJ, Fernández-Navarro C, Pérez-Tijerina E, Montejano-Carrizales JM, José-Yacamán M (2006) Two-stage melting of Au–Pd nanoparticles. J Phys Chem B 110:12884–12889

    Article  Google Scholar 

  23. Mehrer H, Eggersmann M, Gude A, Salamon M, Sepiol B (1997) Diffusion in intermetallic phases of the Fe–Al and Fe–Si systems. Mater Sci Eng A 239:889–898

    Article  Google Scholar 

  24. Holzapfel C, Chakraborty S, Rubie D, Frost D (2009) Fe–Mg interdiffusion in wadsleyite: the role of pressure, temperature and composition and the magnitude of jump in diffusion rates at the 410 km discontinuity. Phys Earth Planet Inter 172:28–33

    Article  CAS  Google Scholar 

  25. Lott K, Nirk T, Volobujeva O (2002) Chemical self-diffusion in undoped ZnS and in undoped CdSe. Cryst Eng 5:147–153

    Google Scholar 

  26. Palagin D, Doye PK (2014) Ni-based nanoalloys: towards thermally stable highly magnetic materials. J Chem Phys 141:214302

    Article  Google Scholar 

  27. Smith W, Todorov IT (2006) A short description of DL_POLY. Mol Simul 32:935–943

    Article  CAS  Google Scholar 

  28. Qi Y, Çağın T, Kimura Y, Goddard WA III (1999) Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu–Ag and Cu–Ni. Phys Rev B 59:3527–3533

    Article  CAS  Google Scholar 

  29. Qi Y, Çağin T, Kimura Y, Goddard WA III (2001) Viscosities of liquid metal alloys from non-equilibrium molecular dynamics. J Comput Aided Mater 8:233–243

    Article  CAS  Google Scholar 

  30. Özdemir KS, Tomak M, Uludoğan M, Çağın T (2004) Liquid properties of Pd–Ni alloys. J Non-Cryst Solids 337:101–108

    Article  Google Scholar 

  31. Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22

    Article  CAS  Google Scholar 

  32. Kart H, Tomak M, Çağin T (2005) Thermal and mechanical properties of Cu–Au intermetallic alloys. Model Simul Mater Sci 13:657–669

    Article  CAS  Google Scholar 

  33. Lv YJ, Chen M (2011) Thermophysical properties of undercooled alloys: an overview of the molecular simulation approaches. Int J Mol Sci 12:278–316

    Article  CAS  Google Scholar 

  34. Akbarzadeh H, Yaghoubi H, Shamkhali AN, Taherkhani F (2013) Effects of gas adsorption on the graphite-supported Ag nanoclusters: a molecular dynamics study. J Phys Chem C 117:26287–26294

    Article  CAS  Google Scholar 

  35. Akbarzadeh H, Yaghoubi H, Shamkhali AN, Taherkhani F (2014) CO adsorption on Ag nanoclusters supported on carbon nanotube: a molecular dynamics study. J Phys Chem C 118:9187–9195

    Google Scholar 

  36. Taherkhani F, Freshteh Seresht P (2015) Doping effect on the Janus-like structure of a copper–iron bimetallic nanocluster and its solid–liquid phase transition. PTEP 4:043I01, 1–12

    Google Scholar 

  37. Taherkhani F, Parviz Z, Akbarzadeh H, Fortunelli A (2015) Temperature and doping effect on thermal conductivity of copper–gold icosahedral bimetallic nanoclusters and bulk structures. J Phys Chem C 119:7922–7932

    Google Scholar 

  38. Ala-Nissila T, Ferrando R, Ying S (2002) Collective and single particle diffusion on surfaces. Adv Phys 51:949–1078

    Google Scholar 

  39. Taherkhani F, Negreiros FR, Parsafar G, Fortunelli A (2010) Simulation of vacancy diffusion in a silver nanocluster. Chem Phys Lett 498:312–316

    Article  CAS  Google Scholar 

  40. Taherkhani F, Akbarzadeh H, Rezania H (2014) Chemical ordering effect on melting temperature, surface energy of copper–gold bimetallic nanocluster. J Alloy Compd 617:746–750

    Google Scholar 

  41. Akbarzadeh H, Taherkhani F (2013) Cluster size dependence of surface energy of Ni nanocluster: a molecular dynamics study. Chem Phys Lett 558:57–61

    Article  CAS  Google Scholar 

  42. Heinonen V, Achim CV, Elder KR, Buyukdagli S, Ala-Nissila T (2014) Phase-field-crystal models and mechanical equilibrium. Phys Rev E 89:032411

    Article  CAS  Google Scholar 

  43. Laasonen K, Panizon E, Bochicchio D, Ferrando R (2013) Competition between icosahedral motifs in AgCu, AgNi, and AgCo nanoalloys: a combined atomistic−DFT study. J Phys Chem C 117:26405–26413

    Article  CAS  Google Scholar 

  44. Alavi S, Thompson DL (2006) Molecular dynamics simulations of the melting of aluminum nanoparticles. J Phys Chem A 110:1518–1523

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Taherkhani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Taherkhani, F. (2016). Doping Effect on Melting Temperature for Gold–Copper Bimetallic Nanocluster and Dependency on Bulk Melting Temperature to the Potential Model. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Crystallizing Ideas – The Role of Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-31759-5_6

Download citation

Publish with us

Policies and ethics