Skip to main content

Vasoactive Factors and Blood Pressure in Children

Pediatric Hypertension
  • 124 Accesses

Abstract

Control of arterial blood pressure (BP) is accomplished by the net effect of vasodilator and vasoconstrictor substances. This chapter presents current data on the ontogeny of the most relevant vasoactive peptide systems in the systemic circulation and in the developing kidney, and highlights how any alteration in the integrity of vasomotor control may lead to deregulation of BP and associated hypertension in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abadir PM, Carey RM, Siragy HM (2003) Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension 42:600–604

    Article  CAS  PubMed  Google Scholar 

  • Affolter J, Webb DJ (2001) Urotensin II: a new mediator in cardiopulmonary regulation? Lancet 358:774–775

    Article  CAS  PubMed  Google Scholar 

  • Ahn D, Ge Y, Stricklett PK et al (2004) Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. J Clin Invest 114:504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajala AR, Almeida SS, Rangel M et al (2012) Association of ACE gene insertion/deletion polymorphism with birth weight, blood pressure levels, and ACE activity in healthy children. Am J Hypertens 25:827–832

    Article  CAS  PubMed  Google Scholar 

  • Ames RS, Sarau HM, Chambers JK et al (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401:282–286

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Hori S, Aramori I et al (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ, Bagby SP (2005) Developmental antecedents of cardiovascular disease: a historical perspective. J Am Soc Nephrol 16:2537–2544

    Article  PubMed  Google Scholar 

  • Batenburg WW, Krop M, Garrelds IM et al (2007) Prorenin is the endogenous agonist of the (pro)renin receptor: binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens 25:2441–2453

    Article  CAS  PubMed  Google Scholar 

  • Beierwaltes WH, Prada J, Carretero OA (1985) Effect of glandular kallikrein on renin release in isolated rat glomeruli. Hypertension 7:27–31

    Article  CAS  PubMed  Google Scholar 

  • Berry C, Touyz R, Dominiczak AF et al (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol 281:H2337–H2365

    CAS  Google Scholar 

  • Bierd TM, Kattwinkel J, Chevalier RL et al (1990) Interrelationship of atrial natriuretic peptide, atrial volume, and renal function in premature infants. J Pediatr 116:753–759

    Article  CAS  PubMed  Google Scholar 

  • Bogdarina I, Welham S, King PJ et al (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boini KM, Nammi S, Grahammer F et al (2008) Role of serum- and glucocorticoid-inducible kinase SGK1 in glucocorticoid regulation of renal electrolyte excretion and blood pressure. Kidney Blood Press Res 31:280–289

    Article  CAS  PubMed  Google Scholar 

  • Brasier AR, Li J (1996) Mechanisms for inducible control of angiotensinogen gene transcription. Hypertension 27:465–475

    Article  CAS  PubMed  Google Scholar 

  • Brawley L, Itoh S, Torrens C et al (2003) Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res 54:83–90

    Article  CAS  PubMed  Google Scholar 

  • Brenner BM, Stein JH (1989) Atrial natriuretic peptides. Churchill Livingstone, New York

    Google Scholar 

  • Brosnihan KB, Li P, Ferrario CM (1996) Angiotensin-(1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 27:523–528

    Article  CAS  PubMed  Google Scholar 

  • Brugts JJ, Isaacs A, de Maat MP et al (2011) A pharmacogenetic analysis of determinants of hypertension and blood pressure response to angiotensin- converting enzyme inhibitor therapy in patients with vascular disease and healthy individuals. J Hypertens 29:509–519

    Article  CAS  PubMed  Google Scholar 

  • Burcklé CA, Danser AHJ, Müller DN et al (2006) Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension 47:552–556

    Article  PubMed  CAS  Google Scholar 

  • Burns KD, Homma T, Harris RC (1993) The intrarenal renin-angiotensin system. Semin Nephrol 13:13–30

    CAS  PubMed  Google Scholar 

  • Cervenka L, Harrison-Bernard LM, Dipp S et al (1999) Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice. Hypertension 34:176–180

    Article  CAS  PubMed  Google Scholar 

  • Chartier L, Schiffrin EL (1987) Role of calcium in effects of atrial natriuretic peptide on aldosterone production in adrenal glomerulosa cells. Am J Physiol 252:E485–E491

    CAS  PubMed  Google Scholar 

  • Chen X, Li W, Yoshida H et al (1997) Targeting deletion of angiotensin type 1B receptor gene in the mouse. Am J Physiol 272:F299–F304

    CAS  PubMed  Google Scholar 

  • Cheung BM, Leung R, Man YB et al (2004) Plasma concentration of urotensin II is raised in hypertension. J Hypertens 22:1341–1344

    Article  CAS  PubMed  Google Scholar 

  • Cheung C, Gibbs D, Brace R (1987) Atrial natriuretic factor in maternal and fetal sheep. Am J Physiol 252:E279–E282

    CAS  PubMed  Google Scholar 

  • Cheung C (1995) Regulation of atrial natriuretic factor secretion and expression in the ovine fetus. Neurosci Behav Rev 19:159–164

    Article  CAS  Google Scholar 

  • Clements JA (1994) The human kallikrein gene family: a diversity of expression and function. Mol Cell Endocrinol 99:C1–C6

    Article  CAS  PubMed  Google Scholar 

  • Coulouarn Y, Lihrmann I, Jegou S et al (1998) Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord. Proc Natl Acad Sci USA 95:15803–15808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowley AW Jr, Mori T, Mattson D et al (2003) Role of renal NO production in the regulation of medullary blood flow. Am J Physiol 284:R1355–R1369

    Article  CAS  Google Scholar 

  • Cui J, Melista E, Chazaro I et al (2005) Sequence variation of bradykinin receptors B1 and B2 and association with hypertension. J Hypertens 23:55–62

    Article  CAS  PubMed  Google Scholar 

  • Danser AH, Derkx FH, Schalekamp MA et al (1998) Determinants of interindividual variation of renin and prorenin concentrations: evidence for a sexual dimorphism of (pro)renin levels in humans. J Hypertens 16:853–862

    Article  CAS  PubMed  Google Scholar 

  • Davis JO, Freeman RH (1976) Mechanisms regulating renin release. Physiol Rev. 56:1–56

    CAS  PubMed  Google Scholar 

  • de Bold AJ, Borenstein HB, Veress AT et al (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    Article  PubMed  Google Scholar 

  • Debonneville C, Flores SY, Kamynina E et al (2001) Phosphorylation of Nedd4- 2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 20:7052–7059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deschepper CF (1994) Angiotensinogen: hormonal regulation and relative importance in the generation of angiotensin II. Kidney Int 46:1561–1563

    Article  CAS  PubMed  Google Scholar 

  • Desir G (2012) Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatr Nephrol 27:719–725

    Article  PubMed  Google Scholar 

  • de Vries WB, Karemaker R, Mooy NF et al (2008) Cardiovascular follow-up at school age after perinatal glucocorticoid exposure in prematurely born children: perinatal glucocorticoid therapy and cardiovascular follow-up. Arch Pediatr Adolesc Med 162:738–744

    Article  PubMed  Google Scholar 

  • Donoghue M, Hsieh F, Baronas RE et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–E9

    Article  CAS  PubMed  Google Scholar 

  • Duka I, Duka A, Kintsurashvili E et al (2003) Mechanisms mediating the vasoactive effects of the B1 receptors of bradykinin. Hypertension 42:1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Edwards LJ, Simonetta G, Owens JA et al (1999) Restriction of placental and fetal growth in sheep alters fetal blood pressure responses to angiotensin II and captopril. J Physiol 515:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Dahr SS, Dipp S, Guan S et al (1993) Renin, angiotensinogen, and kallikrein gene expression in two-kidney Goldblatt hypertensive rats. Am J Hypertens 6:914–919

    Article  CAS  PubMed  Google Scholar 

  • El-Dahr SS, Yosipiv IV, Lewis L et al (1995) Role of bradykinin B2 receptors in the developmental changes of renal hemodynamics in the neonatal rat. Am J Physiol 269:F786–F792

    CAS  PubMed  Google Scholar 

  • El-Dahr SS, Figueroa CD, Gonzalez CB et al (1997) Ontogeny of bradykinin B2 receptors in the rat kidney: implications for segmental nephron maturation. Kidney Int 51:739–749

    Article  CAS  PubMed  Google Scholar 

  • El-Dahr SS, Dipp S, Yosipiv IV et al (1998) Activation of kininogen expression during distal nephron differentiation. Am J Physiol 275:F173–F182

    CAS  PubMed  Google Scholar 

  • Erdös EG, Oshima G (1974) The angiotensin I converting enzyme of the lung and kidney. Acta Physiol Lat Am 24:507–514

    PubMed  Google Scholar 

  • Erdös EG, Skidgel RA (1990) Renal metabolism of angiotensin I and II. Kidney Int 30:S24–S27

    Google Scholar 

  • Ervin MG, Ross MG, Leake RD et al (1992) V1- and V2-receptor contributions to ovine fetal renal and cardiovascular responses to vasopressin. Am J Physiol 262:R636–R643

    CAS  PubMed  Google Scholar 

  • Esther CR Jr, Howard TE, Marino EM et al (1996) Mice lacking angiotensin- converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 7:953–965

    Google Scholar 

  • Fineman JR, Wong J, Morin FC et al (1994) Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J Clin Invest 93:2675–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher AJ, McGarrigle HH, Edwards CM et al (2002) Effects of low dose dexamethasone treatment on basal cardiovascular and endocrine function in fetal sheep during late gestation. J Physiol 545:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn JT, Alderman MH (2005) Characteristics of children with primary hypertension seen at a referral center. Pediatr Nephrol 20:961–966

    Article  PubMed  Google Scholar 

  • Flynn JT (2011) Not ready for prime time: aliskiren for treatment of hypertension or proteinuria in children. Pediatr Nephrol 26:491–492

    Article  PubMed  Google Scholar 

  • Forty EJ, Ashton N (2013) The urotensin system is up-regulated in the pre- hypertensive spontaneously hypertensive rat. PLoS One 8:e83317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franco Mdo C, Dantas AP, Akamine EH et al (2002) Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero. J Cardiovasc Pharmacol 40:501–519

    Article  PubMed  Google Scholar 

  • Fujimori K, Honda S, Sanpei M et al (2005) Effects of exogenous big endothelin-1 on regional blood flow in fetal lambs. Obstet Gynecol 106:818–823

    Article  CAS  PubMed  Google Scholar 

  • Fukamizu A, Takahashi S, Seo MS et al (1990) Structure and expression of the human angiotensinogen gene: Identification of a unique and highly active promoter. J Biol Chem 265:7576–7582

    CAS  PubMed  Google Scholar 

  • Gainer JV, Morrow JD, Loveland A et al (1998) Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. N Engl J Med 339:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Villalba P, Denkers ND, Wittwer CT et al (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron Exp Nephrol 94:e154–e159

    Article  CAS  PubMed  Google Scholar 

  • Gasparo M, Catt KJ, Inagami T et al (2000) International Union of Pharmacology XXIII: the angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  • Ge Y, Bagnall AJ, Stricklett PK et al (2008) Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention. Am J Physiol 295:F1635–F1640

    CAS  Google Scholar 

  • Goldblatt H, Lynch R, Hanzai R (1934) Studies on experimental: production of persistent elevation of systolic blood pessure by means of renal ischemia. J Exp Med 59:347–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez RA, Lynch KR, Sturgill BC et al (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257:F850–F858

    CAS  PubMed  Google Scholar 

  • Goodfriend TL, Elliott ME, Catt KJ (1996) Angiotensin receptors and their antagonists. N Engl J Med 334:1649–1654

    Article  CAS  PubMed  Google Scholar 

  • Goonasekera CD, Shah V, Rees DD et al (2000) Vascular endothelial cell activation associated with increased plasma asymmetric dimethyl arginine in children and young adults with hypertension: a basis for atheroma? Blood Press 9:16–21

    Article  CAS  Google Scholar 

  • Goto M, Mukoyama M, Suga S et al (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362

    Article  CAS  PubMed  Google Scholar 

  • Gribouval O, Gonzales M, Neuhaus T et al (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968

    Article  CAS  PubMed  Google Scholar 

  • Gross V, Schunck WH, Honeck H et al (2000) Inhibition of pressure natriuresis in mice lacking the AT2 receptor. Kidney Int 57:191–202

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Liu J, Niu Q et al (2011) A-6G and A-20C polymorphisms in the angiotensinogen promoter and hypertension risk in Chinese: a meta-analysis. PLoS One 6:e29489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurley SB, Allred A, Le TH et al (2006) Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 116:2218–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenthal E, Paul M, Ganten D et al (1990) Morphology, physiology, and molecular biology of renin secretion. Physiol Rev 70:1067–1116

    CAS  PubMed  Google Scholar 

  • Han KH, Lim JM, Kim WY et al (2005) Expression of endothelial nitric oxide synthase in developing rat kidney. Am J Physiol 288:F694–F702

    CAS  Google Scholar 

  • Handa RK, Johns EJ (1985) Interaction of the renin-angiotensin system and the renal nerves in the regulation of rat kidney function. J Physiol 369:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haulica I, Bild W, Serban DN (2005) Angiotensin peptides and their pleiotropic actions. J Renin Angiotensin Aldosterone Syst 6:121–131

    Article  CAS  PubMed  Google Scholar 

  • Hein L, Barsh GS, Pratt RE et al (1995) Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744–747

    Article  CAS  PubMed  Google Scholar 

  • Hersey R, Nazir M, Whitney K et al (1987) Atrial natriuretic peptide in heart and specific binding in organs from fetal and newborn rats. Cell Biochem Funct 7:35–41

    Article  Google Scholar 

  • Higaki J, Baba S, Katsuya T et al (2000) Deletion allele of angiotensin- converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation 101:2060–2065

    Article  CAS  PubMed  Google Scholar 

  • Himathongkam T, Dluhy RG, Williams GH (1975) Potassim-aldosterone-renin interrelationships. J Clin Endocrinol Metab 41:153–159

    Article  CAS  PubMed  Google Scholar 

  • Hirata Y, Emori T, Eguchi S et al (1993) Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest 91:1367–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Hashimoto M, Totsune K et al (2009) Association of (pro)renin receptor gene polymorphism with blood pressure in Japanese men: the Ohasama study. Am J Hypertens 22:294–299

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Hirose M, Hashimoto K et al (2011) Association of (pro)renin receptor gene polymorphisms with lacunar infarction and left ventricular hypertrophy in Japanese women: the Ohasama study. Hypertens Res 34:530–535

    Article  CAS  PubMed  Google Scholar 

  • Hirsch JR, Meyer M, Forssmann WG (2006) ANP and urodilatin: who is who in the kidney. Eur J Med Res 11:447–454

    CAS  PubMed  Google Scholar 

  • Holland OB, Carr B, Brasier AR (1995) Aldosterone synthase gene regulation by angiotensin. Endocr Res 21:455–462

    Article  CAS  PubMed  Google Scholar 

  • Huh SY, Andrew R, Rich-Edwards JW et al (2008) Association between umbilical cord glucocorticoids and blood pressure at age 3 years. BMC Med 6:25–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunt PJ, Espiner EA, Nicholls MG et al (1996) Differing biological effects of equimolar atrial and brain natriuretic peptide infusions in normal man. J Clin Endocrinol Metab 81:3871–3876

    CAS  PubMed  Google Scholar 

  • Inagami T, Iwai N, Sasaki K et al (1993) Angiotensin II receptors: cloning and regulation. Arzneimittelforschung 43:226–228

    CAS  PubMed  Google Scholar 

  • Ingelfinger JR, Zuo WM, Fon EA et al (1990) In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule: a hypothesis for the intrarenal renin angiotensin system. J Clin Invest 85:417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iosipiv IV, Schroeder M (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199–F207

    CAS  Google Scholar 

  • Ito M, Oliverio MI, Mannon PJ et al (1995) Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA 92:3521–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai N, Inagami T (1992) Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett 298:257–260

    Article  CAS  PubMed  Google Scholar 

  • Iwai N, Ohmichi N, Nakamura Y et al (1994) DD genotype of the angiotensin- converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation 90:2622–2628

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Tang X, Chittampalli SN et al (2002) Angiotensinogen gene polymorphism at −217 affects basal promoter activity and is associated with hypertension in African-Americans. J Biol Chem 277:36889–36896

    Article  CAS  PubMed  Google Scholar 

  • Jeunemaitre X, Soubrier F, Kotelevtsev YV et al (1992) Molecular basis of human hypertension: role of angiotensinogen. Cell 71:169–180

    Article  CAS  PubMed  Google Scholar 

  • Jin XH, McGrath HE, Gildea JJ et al (2004) Renal interstitial guanosine cyclic 3′,5′-monophosphate mediates pressure-natriuresis via protein kinase G. Hypertension 43:1133–1139

    Article  CAS  PubMed  Google Scholar 

  • John SWM, Krege JH, Oliver PM et al (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267:679–681

    Article  CAS  PubMed  Google Scholar 

  • Jung FF, Bouyounes B, Barrio R et al (1993) Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol 7:834–840

    Article  CAS  PubMed  Google Scholar 

  • Kakuchi J, Ichiki T, Kiyama S et al (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47:140–147

    Article  CAS  PubMed  Google Scholar 

  • Kelly RT, Rose JC, Meis PJ et al (1983) Vasopressin is important for restoring cardiovascular homeostasis in fetal lambs subjected to hemorrhage. Am J Obstet Gynecol 146:807–812

    Article  CAS  PubMed  Google Scholar 

  • Kielstein JT, Impraim B, Simmel S et al (2004) Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 109:172–177

    Article  CAS  PubMed  Google Scholar 

  • Kielstein JT, Zoccali C (2005) Asymmetric dimethylarginine: A cardiovascular risk factor and a uremic toxin coming of age? Am J Kidney Dis 46:186–202

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Mizel D, Huang YG et al (2006) Adenosine as a mediator of macula densa-dependent inhibition of renin secretion. Am J Physiol Renal Physiol 290:F1016–F1023

    Article  CAS  PubMed  Google Scholar 

  • Knowles J, Esposito G, Mao L et al (2001) Pressure independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A deficient mice. J Clin Invest 107:975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobori H, Ozawa Y, Suzaki Y et al (2006) Young Scholars Award Lecture: intratubular angiotensinogen in hypertension and kidney diseases. Am J Hypertens 19:541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobori H, Nangaku M, Navar LG et al (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287

    Article  CAS  PubMed  Google Scholar 

  • Kohan DE (1999) Endothelin synthesis by rabbit renal tubule cells. Am J Physiol 261:F221–F226

    Google Scholar 

  • Kumar RS, Thekkumkara TJ, Sen GC (1991) The mRNAs encoding the two angiotensin-converting isozymes are transcribed from the same gene by a tissue-specific choice of alternative transcription initiation sites. J Biol Chem 266:3854–3862

    CAS  PubMed  Google Scholar 

  • Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339:321–328

    Article  CAS  PubMed  Google Scholar 

  • Longo M, Jain V, Vedernikov YP et al (2005) Fetal origins of adult vascular dysfunction in mice lacking endothelial nitric oxide synthase. Am J Physiol 288:R1114–R1121

    CAS  Google Scholar 

  • Lopez ML, Pentz ES, Robert B et al (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345–F356

    CAS  Google Scholar 

  • Lorenz JN, Greenberg SG, Briggs JP (1993) The macula densa mechanism for control of renin secretion. Semin Nephrol 13:531–542

    CAS  PubMed  Google Scholar 

  • Lu M, Liu YH, Goh HS et al (2010) Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol 21:993–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüscher TF, Boulanger CM, Dohi Y et al (1992) Endothelium-derived contracting factors. Hypertension 19:117–130

    Article  PubMed  Google Scholar 

  • Lynch KR, Peach MJ (1991) Molecular biology of angiotensinogen. Hypertension 17:263–269

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Yoshimura T, Okamura H (2003) Asymmetric dimethylarginine: an endogenous inhibitor of nitric oxide synthase, in maternal and fetal circulation. J Soc Gynecol Investig 10:2–4

    Article  CAS  PubMed  Google Scholar 

  • Marceau F, Hess JF, Bachvarov DR (1998) The B1 receptors for kinins. Pharmacol Rev 50:357–386

    CAS  PubMed  Google Scholar 

  • Matsushita M, Shichiri M, Imai T et al (2001) Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J Hypertens 19:2185–2190

    Article  CAS  PubMed  Google Scholar 

  • McEachern AE, Shelton ER, Bhakta S et al (1991) Expression cloning of a rat B2 bradykinin receptor. Proc Natl Acad Sci USA 88:7724–7728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata N, Park F, Li XF et al (1998) Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol 277:F437–F446

    Google Scholar 

  • Miyazaki H, Fukamizu A, Hirose S et al (1984) Structure of the human renin gene. Proc Natl Acad Sci USA 81:5999–6003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki M, Takai S (2001) Local angiotensin II-generating system in vascular tissues: the roles of chymase. Hypertens Res 24:189–193

    Article  CAS  PubMed  Google Scholar 

  • Morganti A, Lopez-Ovejero JA, Pickering TG et al (1979) Role of the sympathetic nervous system in mediating the renin response to head-up tilt. Their possible synergism in defending blood pressure against postural changes during sodium deprivation. Am J Cardiol 43:600–604

    Article  CAS  PubMed  Google Scholar 

  • Nagata M, Tanimoto K, Fukamizu A et al (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753

    CAS  PubMed  Google Scholar 

  • Navar LG (1997) The kidney in blood pressure regulation and development of hypertension. Med Clin North Am 81:1165–1198

    Article  CAS  PubMed  Google Scholar 

  • Navar LG, Harrison-Bernard LM, Nishiyama A et al (2002) Regulation of intrarenal angiotensin II in hypertension. Hypertension 39:316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen G, Delarue F, Burcklé C et al (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niimura F, Labosky PA, Kakuchi J et al (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norwood VF, Craig MR, Harris JM et al (1997) Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol 272:R662–R668

    CAS  PubMed  Google Scholar 

  • Oliverio MI, Kim HS, Ito M et al (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima K, Miyazaki Y, Brock JW et al (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852

    Article  CAS  PubMed  Google Scholar 

  • Oshima Y, Kinouchi K, Ichihara A et al (2011) Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 22:2203–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott C, Schneider MP, Delles C et al (2011) Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men. Pharmacogenet Genomics 21:347–349

    Article  CAS  PubMed  Google Scholar 

  • Päivä H, Kähönen M, Lehtimäki T et al (2008) Asymmetric dimethylarginine (ADMA) has a role in regulating systemic vascular tone in young healthy subjects: the cardiovascular risk in young finns study. Am J Hypertens 21:873–878

    Article  PubMed  CAS  Google Scholar 

  • Paul M, Mehr AP, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev. 86:747–803

    Article  CAS  PubMed  Google Scholar 

  • Pesquero JB, Bader M (1998) Molecular biology of the kallikrein-kinin system: from structure to function. Braz J Med Biol Res 31:197–203

    Article  Google Scholar 

  • Peters J, Schlaghecke R, Thouet H et al (1990) Endogenous vasopressin supports blood pressure and prevents severe hypotension during epidural anesthesia in conscious dogs. Anesthesiology 73:694–702

    Article  CAS  PubMed  Google Scholar 

  • Pladys P, Lahaie I, Cambonie G et al (2004) Role of brain and peripheral angiotensin II in hypertension and altered arterial baroreflex programmed during fetal life in rat. Pediatr Res 55:1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Prieto M, Dipp S, Meleg-Smith S et al (2001) Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 6:29–37

    CAS  PubMed  Google Scholar 

  • Ramchandran R, Sen GC, Misono K et al (1994) Regulated cleavage-secretion of the membrane-bound angiotensin-converting enzyme. J Biol Chem 69:2125–2130

    Google Scholar 

  • Rentzsch B, Todiras M, Iliescu R et al (2008) Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52:967–973

    Article  CAS  PubMed  Google Scholar 

  • Richer C, Hornych H, Amiel-Tison C et al (1977) Plasma renin activity and its postnatal development in preterm infants: preliminary report. Biol Neonate 31:301–304

    Article  CAS  PubMed  Google Scholar 

  • Riediger F, Quack I, Qadri F et al (2011) Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol 22:2193–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigat B, Hubert C, Alhenc-Gelas F et al (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roques BP, Noble F, Dauge V et al (1993) Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev 45:87–146

    CAS  PubMed  Google Scholar 

  • Rosenfeld CR, Samson WK, Roy TA et al (1992) Vasoconstrictor-induced secretion of ANP in fetal sheep. Am J Physiol 263:E526–E533

    CAS  PubMed  Google Scholar 

  • Sánchez SI, Seltzer AM, Fuentes LB et al (2008) Inhibition of angiotensin II receptors during pregnancy induces malformations in developing rat kidney. Eur J Pharmacol 588:114–123

    Article  PubMed  CAS  Google Scholar 

  • Santos RA, Simoes Silva AC, Maric C et al (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos RA, Ferreira AJ (2007) Angiotensin-(1–7) and the renin-angiotensin system. Curr Opin Nephrol Hypertens 16:122–128

    Article  CAS  PubMed  Google Scholar 

  • Schunkert H, Ingelfinger JR, Jacob H et al (1992) Reciprocal feedback regulation of kidney angiotensinogen and renin mRNA expressions by angiotensin II. Am J Physiol 263:E863–E869

    CAS  PubMed  Google Scholar 

  • Schweda F, Friis U, Wagner C et al (2007) Renin release. Physiology (Bethesda) 22:310–319

    Article  CAS  Google Scholar 

  • Schweitz H, Vigne P, Moinier D et al (1992) A new member of the natriuretic peptide family is present in the venom of the Green Mamba (Dendroaspis angusticeps). JBC 267:13928–13932

    CAS  Google Scholar 

  • Shenouda A, Douglas SA, Ohlstein EH et al (2002) Localization of urotensin-II immunoreactivity in normal human kidneys and renal carcinoma. J Histochem Cytochem 50:885–889

    Article  CAS  PubMed  Google Scholar 

  • Simpson CM, Penny DJ, Stocker CF et al (2006) Urotensin II is raised in children with congenital heart disease. Heart 92:983–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siragy HM (1993) Evidence that intrarenal bradykinin plays a role in regulation of renal function. Am J Physiol 265:E648–E654

    CAS  PubMed  Google Scholar 

  • Siragy HM, Carey RM (1997) The subtype-2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100:264–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solhaug MJ, Ballèvre LD, Guignard JP et al (1996) Nitric oxide in the developing kidney. Pediatr Nephrol 10:529–533

    Article  CAS  PubMed  Google Scholar 

  • Song R, Preston G, Yosypiv IV (2012) Ontogeny of angiotensin-converting enzyme 2. Pediatric Res 71:13–19

    Article  CAS  Google Scholar 

  • Song R, Preston G, Yosypiv IV (2013b) Ontogeny of the prorenin receptor. Pediatric Res 74:5–10

    Article  CAS  Google Scholar 

  • Song R, Preston G, Ichihara A et al (2013a) Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia. PLoS ONE 8:e63835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Preston G, Kidd L et al (2016) Prorenin receptor is critical for nephron progenitors. Dev Biology 409:382–391

    Article  CAS  Google Scholar 

  • Stalker HP, Holland NH, Kotchen JM et al (1976) Plasma renin activity in healthy children. J Pediatr 89:256–258

    Article  CAS  PubMed  Google Scholar 

  • Sudoh T, Minamino N, Kangawa K et al (1990) C-type natriuretic peptide (NP): A new member of natriuretic peptide family identified in porcine brain. BBRC 168:863–870

    CAS  PubMed  Google Scholar 

  • Szentivanyi M Jr, Park F, Maeda CY et al (2000) Nitric oxide in the renal medulla protects from vasopressin-induced hypertension. Hypertension 35:740–745

    Article  CAS  PubMed  Google Scholar 

  • Taddei S, Virdis A, Mattei P et al (1996a) Defective L-arginine–nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94:1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Taddei S, Virdis A, Mattei P et al (1996b) Defective L-arginine–nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94:1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Lopez ML, Cowhig JE Jr et al (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132

    Article  PubMed  Google Scholar 

  • Tamura N, Ogawa Y, Chusho H et al (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97:4239–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangalakis K, Lumbers ER, Moritz KM et al (1992) Effect of cortisol on blood pressure and vascular reactivity in the ovine fetus. Exp Physiol 77:709–717

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto K, Sugiyama F, Goto Y et al (1994) Angiotensinogen-deficient mice with hypotension. J Biol Chem 269:31334–31337

    CAS  PubMed  Google Scholar 

  • Teichert AM, Scott JA, Robb GB et al (2008) Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ Res 103:24–33

    Article  CAS  PubMed  Google Scholar 

  • Tomita H, Brace RA, Cheung CY et al (1985) Vasopressin dose-response effects on fetal vascular pressures, heart rate, and blood volume. Am J Physiol 249:H974–H980

    CAS  PubMed  Google Scholar 

  • Totsune K, Takahashi K, Arihara Z et al (2001) Role of urotensin II in patients on dialysis. Lancet 358:810–811

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  PubMed  Google Scholar 

  • Tsuchida S, Matsusaka T, Chen X et al (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi Y, Matsubara H, Masaki H et al (1999) Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest 104:925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tufro-McReddie A, Gomez RA (1993) Ontogeny of the renin-angiotensin system. Semin Nephrol 13:519–530

    CAS  PubMed  Google Scholar 

  • Ujiie K, Terada Y, Nonoguchi H et al (1992) Messenger RNA expression and synthesis of endothelin-1 along rat nephron segments. J Clin Invest 90:1043–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinson GP, Laird SM, Whitehouse BJ et al (1991) The biosynthesis of aldosterone. J Steroid Biochem Mol Biol 39:851–858

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Rodi CP, Day ML et al (1987) Developmental changes in the rat atriopeptin hormonal system. J Clin Invest. 79:1325–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weil J, Bidlingmaier F, Döhlemann C et al (1986) Comparison of plasma atrial natriuretic peptide levels in healthy children from birth to adolescence and in children with cardiac diseases. Pediatr Res 20:1328–1331

    Article  CAS  PubMed  Google Scholar 

  • Wolf G, Haberstroh U, Neilson EG (1992) Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am J Pathol 140:95–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong J, Vanderford PA, Winters J et al (1995) Endothelin b receptor agonists produce pulmonary vasodilation in intact newborn lambs with pulmonary hypertension. J Cardiovasc Pharmacol 25:207–215

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Xu J, Velazquez H et al (2011) Renalase deficiency aggravates ischemic myocardial damage. Kidney Int 79:853–860

    Article  CAS  PubMed  Google Scholar 

  • Wysocki J, Ye M, Rodriguez E, González-Pacheco FR et al (2010) Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension 55:90–98

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Chao L, Chao J (1989) Renal kallikrein mRNA localization by in situ hybridization. Kidney Int 35:1324–1329

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Costa-Goncalves AC, Todiras M et al (2008) Endothelial dysfunction and elevated blood pressure in MAS gene-deleted mice. Hypertension 51:574–580

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Hirohama T, Uemura H (2002) Endothelin B receptor-like immunoreactivity in podocytes of the rat kidney. Arch Histol Cytol 65:245–250

    Article  PubMed  Google Scholar 

  • Yanagisawa H, Kurihara S, Kimura K et al (1988) A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl 6:S188–S191

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Jiang B et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:188

    Article  CAS  Google Scholar 

  • Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension:23, 369–374

    Google Scholar 

  • Yosipiv IV, El-Dahr SS (1995) Developmental regulation of ACE gene expression by endogenous kinins and angiotensin II. Am J Physiol 269:F172–F179

    CAS  PubMed  Google Scholar 

  • Yosipiv IV, El-Dahr SS (1996) Activation of angiotensin-generating systems in the developing rat kidney. Hypertension 27:281–286

    Article  CAS  PubMed  Google Scholar 

  • Yosipiv IV, Dipp S, El-Dahr SS (1997) Role of bradykinin B2 receptors in neonatal kidney growth. J Am Soc Nephrol 8:920–928

    CAS  PubMed  Google Scholar 

  • Yu ZY, Lumbers ER, Simonetta G (2002) The cardiovascular and renal effects of acute and chronic inhibition of nitric oxide production in fetal sheep. Exp Physiol 87:343–351

    Article  CAS  PubMed  Google Scholar 

  • Zeller R, Bloch KD, Williams BS et al (1987) Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev 1:693–698

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xia X, Reisenauer MR et al (2007) Aldosterone-induced Sgk1 relieves Dot1a–Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest 117:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong JC, Huang DY, Yang YM et al (2004) Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension 44:907–912

    Article  CAS  PubMed  Google Scholar 

  • Zhou MS, Schulman IH, Raij L (2004) Nitric oxide, angiotensin II, and hypertension. Semin Nephrol 24:366–378

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Sui L, Wu L, et al. (2015). Association between essential hypertension and three vasoactive peptides, urotensin II, endothelin and adrenomedullin. Clin Exp Hypertens 37:604–608.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor V. Yosypiv .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Yosypiv, I.V. (2017). Vasoactive Factors and Blood Pressure in Children. In: Flynn, J., Ingelfinger, J., Redwine, K. (eds) Pediatric Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-31420-4_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31420-4_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31420-4

  • Online ISBN: 978-3-319-31420-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Vasoactive Factors and Blood Pressure in Children
    Published:
    07 July 2022

    DOI: https://doi.org/10.1007/978-3-319-31420-4_2-2

  2. Original

    Vasoactive Factors and Blood Pressure in Children
    Published:
    13 April 2017

    DOI: https://doi.org/10.1007/978-3-319-31420-4_2-1