Skip to main content

Nucleation Kinetics Analyses of Deeply Undercooled Metallic Liquids by Fast Scanning Calorimetry

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

Fast chip calorimetry (FSC) offers fascinating new opportunities for calorimetric analyses that are based on the unprecedentedly wide range of heating and cooling rates that are accessible for controlled experiments. Coupled with the high rates that are applicable, FSC offers also ideal conditions for nucleation kinetics analyses that are based on a statistical approach, since such analyses require data sets with a sufficiently high statistical significance. Thus, applying high rates and thus performing many measurements per given time allows achieving high accuracy for the determined nucleation kinetics parameters. Yet while the calibration procedure for conventional differential scanning calorimeters (DSC) is well known, new procedures need to be established for fast chip calorimetry, because the calibration behavior depends on the position of the sample on the measurement area. In addition to a detailed discussion of the calibration of FSC, the nucleation rates of the solidification transformation as obtained from FSC measurements are discussed for two case examples that display the opportunities offered and the issues encountered in FSC-based nucleation kinetics analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lubetkin SD, Akhtar M (1996) J Colloid Interface Sci 180:43

    Article  Google Scholar 

  2. Ward MR, Jamieson WJ, Leckey CA, Alexander AJ (2013) J Chem Phys 142:144501

    Article  Google Scholar 

  3. Sun J, Leighton H, Yan MK, Ariya P (2012) Atmos Chem Phys 12:12155

    Article  Google Scholar 

  4. Orava J, Greer AL, Gholipour B, Hewak DW, Smith CE (2012) Appl Phys Lett 101:091906

    Article  Google Scholar 

  5. Kelton K, Greer AL (2010) Nucleation in condensed matter – applications in materials and biology. Pergamon, Oxford. ISBN 978-0-08-042147-6

    Google Scholar 

  6. Schumacher P, Greer AL (1994) Mater Sci Eng A 181:1335

    Article  Google Scholar 

  7. Bokeloh J, Rozas RE, Horbach J, Wilde G (2011) Phys Rev Lett 107:145701

    Article  Google Scholar 

  8. Bokeloh J, Wilde G, Rozas RE, Benjamin R, Horbach J (2014) Eur Phys J Spec Top 223:511

    Article  Google Scholar 

  9. Uttormark MJ, Zanter JW, Perepezko JH (1997) J Cryst Growth 177:258

    Article  Google Scholar 

  10. Wilde G, Sebright JL, Perepezko JH (2006) Acta Mater 54:4759

    Article  Google Scholar 

  11. Bokeloh J, Wilde G (2014) JOM 66:1512

    Article  Google Scholar 

  12. Vonnegut B (1948) J Colloid Sci 3:563

    Article  Google Scholar 

  13. Turnbull D, Cech RE (1950) J Appl Phys 21:804

    Article  Google Scholar 

  14. Turnbull D (1952) J Chem Phys 20:411

    Article  Google Scholar 

  15. Perepezko JH (1984) Mat Sci Eng 65:125

    Article  Google Scholar 

  16. Bardenheuer P, Bleckmann R (1939) KWI Eisenforschung 21:201

    Google Scholar 

  17. Wilde G, Görler GP, Willnecker R, Dietz G (1994) Appl Phys Lett 65:397

    Article  Google Scholar 

  18. Wilde G, Mitsch C, Görler GP, Willnecker R (1996) J Non-Cryst Solids 205–207:425

    Article  Google Scholar 

  19. Herlach DM (1994) Mater Sci Eng R 12:177

    Article  Google Scholar 

  20. Bradshaw FJ, Gasper ME, Pearson S (1958–59) J Inst Met 87:15

    Google Scholar 

  21. Zhao BG, Li LF, Lu FG, Zhai QJ, Yang B, Schick C, Gao YL (2015) Thermochim Acta 603:2

    Article  Google Scholar 

  22. Becker R, Döring W (1935) Ann Phys 24:719

    Article  Google Scholar 

  23. Turnbull D, Fisher JC (1949) J Chem Phys 17:71

    Article  Google Scholar 

  24. Chalmers B (1954) Trans AIME 200:519

    Google Scholar 

  25. Jackson A, Chalmers B (1956) Can J Phys 34:473

    Article  Google Scholar 

  26. Spaepen F (1994) Solid State Phys 47:1

    Google Scholar 

  27. Bokeloh J (2013) High-precision nucleation rate measurements of glass-fluxed pure gold, copper, nickel and cobalt samples and of an AuSi-based bulk metallic glass-former. University of Münster, Münster

    Google Scholar 

  28. Zhuravlev E, Schick C (2010) Thermochim Acta 505:1

    Article  Google Scholar 

  29. Höhne GW, Cammenga HK, Eysel W, Gmelin E, Hemminger W (1990) Thermochim Acta 160:1

    Article  Google Scholar 

  30. Simon C, Peterlechner M, Wilde G (2015) Thermochim Acta 603:39

    Article  Google Scholar 

  31. Chen MZ, Du MT, Jiang J, Li DW, Jiang W, Zhuravlev E, Zhou DS, Schick C, Xue G (2011) Thermochim Acta 526:58

    Article  Google Scholar 

  32. van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Thermochim Acta 522:46

    Article  Google Scholar 

  33. Peterlechner M, Waitz T, Gammer C, Antretter T (2011) Int J Mater Res 102:634

    Article  Google Scholar 

  34. Peterlechner M (2010) Amorphization and crystallization of severe plastic deformed NiTi shape memory alloys. University of Vienna, Wein

    Google Scholar 

  35. Otsuka K, Ren X (2005) Prog Mater Sci 50:511

    Article  Google Scholar 

  36. Yang B, Abyzov AS, Zhuravlev E, Gao Y, Schmelzer JWP, Schick C (2013) J Chem Phys 138:054501

    Article  Google Scholar 

  37. Yang B, Gao YL, Zou CD, Zhai QJ, Zhuravlev E, Schick C (2009) Mater Lett 63:2476

    Article  Google Scholar 

  38. Yang B, Gao Y, Zou C, Zhai Q, Abyzov AS, Zhuravlev E, Schmelzer JWP, Schick C (2011) Appl Phys A 104:189

    Article  Google Scholar 

  39. Block BJ, Das SK, Oettel M, Virnau P, Binder K (2010) J Chem Phys 133:154702

    Article  Google Scholar 

  40. Zhang Y, Simon C, Volkmann T, Kolbe M, Herlach DM, Wilde G (2014) Appl Phys Lett 105:041908

    Article  Google Scholar 

  41. Massalski TB, Okamoto H (1990) Binary alloy phase diagrams. ASM, Materials Park, OH

    Google Scholar 

  42. Yang B, Perepezko JH, Schmelzer JWP, Gao Y, Schick C (2014) J Chem Phys 140:10451

    Google Scholar 

  43. Turnbull D (1950) J Chem Phys 18:198

    Article  Google Scholar 

  44. Klein S, Holland-Moritz D, Herlach DM (2009) Phys Rev B 80:212202

    Article  Google Scholar 

  45. Klein S, Herlach DM (2013) J Appl Phys 114:183510

    Article  Google Scholar 

  46. Yost FG (1974) J Cryst Growth 23:137

    Article  Google Scholar 

  47. Nishiyama N, Inoue A (1999) Acta Metall 47:1487

    Google Scholar 

  48. Turnbull D (1969) Contemp Phys 10:473

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports by the DFG and by the Alexander von Humboldt-Foundation are gratefully acknowledged. The authors acknowledge the help of the group of Prof. C. Schick (Rostock University) with setting up the electronics hardware for the chip calorimeter, and the authors also thank the group of Prof. D.M. Herlach for their support with the drop-tube processing of the Bi-Ga sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wilde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simon, C., Zhang, Y., Wilde, G. (2016). Nucleation Kinetics Analyses of Deeply Undercooled Metallic Liquids by Fast Scanning Calorimetry. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_20

Download citation

Publish with us

Policies and ethics