Skip to main content

Calcification in the Cnidaria Through Time: An Overview of Their Skeletal Patterns from Individual to Evolutionary Viewpoints

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

Compared to the several hundreds of Families recognized among the Cnidaria phylum, the number of taxa in which a biomineralization process has been developed appears rather restricted. However an in-depth understanding of the resulting hard-parts is of major importance with respect to both evolutionary history of some major components of the phylum and contribution to a general model of calcium carbonate mineralization among living organisms. Results of a top-down approach involving recent physical characterization methods are summarized, emphasizing the remarkable and somewhat paradoxical aspects of this biochemically driven crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babcock LE (1991) The enigma of conulariid affinities. In: Simonetta AM, Conway Morris S (eds) The early evolution of metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge, pp 133–143

    Google Scholar 

  • Bayer FM, MacIntyre IG (2001) The mineral component of the axis and holdfast of some gorgonacean octocorals (Coelenterata Anthozoa), with special reference to the family Gorgoniidae. Proc Biol Soc Wash 114:309–345

    Google Scholar 

  • Bengtson S (1981) Atractosella, a Silurian alcyonacean octocoral. J Paleontol 55(2):281–294

    Google Scholar 

  • Bournes GC (1899) Studies on the structure and formation of the calcareous skeleton of the Anthozoa. Q J Microsc Sci 41:499–547

    Google Scholar 

  • Bryan WH, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc R Soc Queensland 52(9):78–91

    Google Scholar 

  • Budd AF, Romano SL, Smith ND et al (2010) Rethinking the phylogeny of Scleractinian corals: a review of morphological and molecular data. Integr Comp Biol 90(3):411–427

    Article  Google Scholar 

  • Cairns SD, Macintyre IG (1992) Phylogenetic implication of calcium carbonate mineralogy in the Stylasteridae (Cnidaria Hydrozoa). Palaios 7:96–107

    Article  Google Scholar 

  • Cartwright P, Collins A (2007) Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages. Integr Comp Biol 47:744–751

    Article  PubMed  Google Scholar 

  • Cartwright P, Halgedahl SL, Hendricks JR et al (2007) Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS One 2(10):e1121. doi:10.1371/journal.pone.0001121

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CA, Odorico DM, Lohuis MT et al (1995) Systematic relationships within the Anthozoa (Cnidaria:Anthozoa) using the 5V-end of the 28S rDNA. Mol Phylogenet Evol 4:175–202

    Article  CAS  PubMed  Google Scholar 

  • Collins AG (2009) Recent insights into Cnidarian phylogeny. Smithson Contrib Mar Sci 38:139–149

    Google Scholar 

  • Cuif JP (2013) The Rugosa – Scleractinia gap re-examined through microstructural and biochemical evidence: a tribute to H.C. Wang. Palaeoworld 23:1–14

    Article  Google Scholar 

  • Cuif JP, Dauphin Y (1998) Microstructural and physico-chemical characterizations of the “centers of calcification” in the septa of some recent Scleractinian corals. Paläontol Z 72(3 –4):257–270

    Article  Google Scholar 

  • Cuif JP, Dauphin Y (2005) The environment recording unit in coral skeletons: a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2:61–73

    Article  CAS  Google Scholar 

  • Cuif JP, Dauphin Y, Doucet J et al (2003a) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67(1):75–83

    Article  CAS  Google Scholar 

  • Cuif JP, Lecointre G, Perrin C et al (2003b) Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zool Scr 32(5):459–473

    Article  Google Scholar 

  • Cuif JP, Dauphin Y, Sorauf JE (2011) Biominerals and fossils through time. Cambridge University Press, Cambridge, 490 p

    Google Scholar 

  • Cuif JP, Dauphin Y, Nehrke G, Nouet J, Perez-Huerta A (2012) Layered growth and crystallization in calcareous biominerals: impact of structural and chemical evidence on two major concepts in invertebrate biomineralization studies. Minerals 2:11–39

    Article  CAS  Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM et al (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334(6059):1091–1097. doi:10.1126/science.1206375

    Article  CAS  PubMed  Google Scholar 

  • Esford LE, Lewis JC (1990) Stiffness of Caribbean gorgonians (Coelenterata, Octocorallia) and Ca-Mg content of their axes. Mar Ecol Prog Ser 7:189–200

    Article  Google Scholar 

  • Floquet N, Vielzeuf D (2012) Ordered misorientation and preferential direction of growth in mesocrystalline red coral sclerites. Cryst Growth Des 12:4805–4820

    Article  CAS  Google Scholar 

  • Frech F (1890) Die Korallen fauna der Trias: I. Die Korallen der Juvavischen Triasprovinz. Palaeontographica 7(1):1–116

    Google Scholar 

  • Fukami H, Chen CA, Budd AF et al (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scler-actinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3(9):e3222. doi:10.1371/journal.pone.0003222

    Article  PubMed  PubMed Central  Google Scholar 

  • Glaessner MF (1961) Precambrian animals. Sci Am 204:72–78

    Article  Google Scholar 

  • Hartman WD, Goreau TF (1975) A Pacific tabulate sponge, living representative of a new order of sclerosponges. Postilla 167:1–21

    Article  Google Scholar 

  • Haeckel E (1896) Systematische Phylogenie. Wirbellose Tiere. Reimer, Berlin

    Book  Google Scholar 

  • Jell JS (1984) Cambrian cnidarians with mineralized skeletons. In: Recent advances in the Paleobiology and Geology of the Cnidaria. Proceedings of the 4th international symposium on Fossil Cnidaria. Paleontographica Americana, Ithaca, 54, pp 105–109

    Google Scholar 

  • Jenkins RJF (1984) Interpreting the oldest fossil cnidarians. In: Recent advances in the Paleobiology and Geology of the Cnidaria. Proceedings of the 4th international symposium on Fossil Cnidaria, Paleontographica Americana, Ithaca, 54, pp 95–104

    Google Scholar 

  • Kitano Y, Hood DW (1965) The influence of organic material on the polymorphic crystallization of calcium carbonate. Geochim Cosmochim Acta 29:29–41

    Article  CAS  Google Scholar 

  • Kölliker A (1864) Icones Histiologicae oder Atlas der vergleichenden Gewebelehre. Engleman, Leipzig

    Book  Google Scholar 

  • Lacaze-Duthiers H. de (1864) Histoire naturelle du corail. Ballière, Paris

    Google Scholar 

  • Lafuste J (1963) Note on the microstructure of the Permian Tabulate Coral Bayhaium. J Paleontol 37(5):1127–1131

    Google Scholar 

  • Lafuste J, Jell JS, Gandin A et al (1988) New Tabuloid form from the Lower Cambrian of South Australia. In: Jell PA, Pickett JW (eds) 5th international symposium on Fossil Cnidaria Association of Australasian Palaeontologists Brisbane Qsl. Australia

    Google Scholar 

  • Lafuste J, Debrenne F, Gandin A (1991) The oldest tabulate coral and the associated Archaeocyatha, Lower Cambrian, Flinders range, South Australia. Geobios 24(6):697–718

    Article  Google Scholar 

  • Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invertebr Biol 123:23–42

    Article  Google Scholar 

  • Mass T, Drake JL, Haramaty L et al (2013) Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr Biol 23:1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Medina M, Collins AG, Takaoka T et al (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci U S A 103:9096–9100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore RC, Harrington HJ (1956) Conulata. In: Moore RC (ed) Treatise on invertebrate paleontology. Part F (Coelenterata). The University of Kansas Press, Lawrence, pp F54–F66

    Google Scholar 

  • Noé SU, Dullo WC (2006) Skeletal morphogenesis and growth mode of modern and fossil deep-water isidid gorgonians (Octocorallia) in the West Pacific (New Zealand and Sea of Okhotsk). Coral Reefs 25:303–320

    Article  Google Scholar 

  • Oekentorp K (2007) The microstructure concept – coral research in the conflict of controversial opinions. Bull Geosci 82(1):95–97

    Article  Google Scholar 

  • Ogilvie MM (1896) Microscopic and systematic study of Madreporarian types of corals. Philos Trans R Soc London B 187:83–345

    Article  Google Scholar 

  • Park TY, Woo J, Lee DJ et al (2011) A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution. Nat Commun 2:442. doi:10.1038/ncomms1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul CRC, Smith AB (1988) Echinoderm phylogeny and evolutionary biology. Published for the Liverpool Geological Society. Clarendon Press, Oxford

    Google Scholar 

  • Pratt BR, Spincer BR, Wood RA et al (2001) Ecology of the Cambrian radiation. Columbia University Press, New-York

    Google Scholar 

  • Raup DM, Sepkowski JJ (1982) Mass extinctions in the marine fossil record. Science 215(19):1501–1503

    Article  CAS  PubMed  Google Scholar 

  • Reggi M, Fermani S, Landi V et al (2014) Biomineralization in Mediterranean corals: the role of the intraskeletal organic matrix. Cryst Growth Des 14(9):4310–4320. http://dx.doi.org/10.1021/cg5003572

    Google Scholar 

  • Retallack GJ (2013) Ediacaran life on land. Nature 493:89–92. doi:10.1038/nature11777

    Article  PubMed  Google Scholar 

  • Ries JB, Stanley SM, Hardie LA (2006) Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geology 34(7):525–528. doi:10.1130/G22600.1

    Article  Google Scholar 

  • Romano SL, Cairns SD (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 67(3):1043–1068

    Google Scholar 

  • Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642

    Article  CAS  Google Scholar 

  • Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22

    Article  CAS  Google Scholar 

  • Scrutton CT (1983) Origin and early evolution of Tabulate corals. In: Oliver WA, Sando WJ et al (eds) Recent advances in the Paleobiology and Geology of the Cnidaria. Proceedings of the 4th international symposium on Fossil Cnidaria, Paleontographica Americana Ithaca, 54, pp 110–118

    Google Scholar 

  • Sprigg RC (1947) Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Trans Roy Soc S Aust 71:212–224

    Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19

    Article  Google Scholar 

  • Stolarski J, Meibom A, Radoslaw P et al (2007) A Cretaceous scleractinian coral with a calcitic skeleton. Science 318:92–94

    Article  CAS  PubMed  Google Scholar 

  • Stolarski J, Kitahara MV, Miller DJ et al (2011) The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol Biol 11(1):316

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor PD, Berning B, Wilson MA (2013) Reinterpretation of the Cambrian ‘bryozoan’ Pywackia as an octocoral. J Paleontol 87(6):984–990

    Article  Google Scholar 

  • Van Iten H (1991) Evolutionary affinities of conulariids. In: Simonetta AM, Conway Morris S (eds) The early evolution of Metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge, pp 145–155

    Google Scholar 

  • Van Iten H, Muir LA, Botting JP et al (2013) Conulariids and Sphenothallus (Cnidaria, Medusozoa) from the Tonggao Formation (Lower Ordovician, China). Bull Geosci 88(4):713–722

    Article  Google Scholar 

  • Van Iten H, Marques AC, De Moraes L et al (2014) Origin and early diversification of the phylum Cnidaria Verill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 2014:1–14

    Google Scholar 

  • Vandermeulen JH, Watabe N (1973) Studies on reef corals: I. Skeleton formation by newly settled planula larva of Pocillopora damicornis. Mar Biol 23:47–57

    Article  Google Scholar 

  • Vaughan T, Wells J (1943) Revision of the suborders, families and genera of the Scleractinia. Geol Soc Am Spec Pap 44:1–363

    Google Scholar 

  • Veis A (2005) Awindow on biomineralization. Science 307:1419–1420

    Article  CAS  PubMed  Google Scholar 

  • Veron JEN, Odorico DM, Chen CA et al (1996) Reassessing evolutionary relationships of scleractinian corals. Coral Reefs 15:1–9

    Article  Google Scholar 

  • Volz W (1896) Die Korallen fauna der Trias: II. Die Korallen der Schichten von St. Casian, in Süd-Tirol. Palaeontographica 32:1–124

    Google Scholar 

  • von Heider AR (1886) Korallenstudien. Z Wissensch Zool 46:507–535

    Google Scholar 

  • von Koch G (1886) Ueber das Verhältniss von Skelet und Weichtheilen bei den Madreporarien. Morphol Jahrb 12:154–162

    Google Scholar 

  • Waggoner BM, Colins AG (2004) Reductio ad absurdum: testing the evolutionary relationships of Ediacaran and Palaeozoic problematic fossils using molecular divergence dates. J Paleontol 78:51–61

    Article  Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology. Part F (Coelenterata). The University of Kansas Press, Lawrence, pp F328–F344

    Google Scholar 

  • Wendt J (1989) Tetradiidae first evidence of aragonitic mineralogy in Tabulate corals. Paläontol Z 63(3–4):177–181

    Article  Google Scholar 

  • Wendt J (1990) The first aragonitic rugose coral. J Paleontol 64(3):335–340

    Article  Google Scholar 

  • Zaika Y (2010) Structure of the corallite wall of the Upper Ordovician and Silurian Favositidae (Tabulata) and its possible use in stratigraphic correlation. Palaeoworld 19:256–267

    Article  Google Scholar 

  • Zapalski MK (2014) Evidence of photosymbiosis in Paleozoic tabulate corals. Proc R Soc B 281:20132663. http://dx.doi.org/10.1098/rspb.2013.2663

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Cuif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cuif, JP. (2016). Calcification in the Cnidaria Through Time: An Overview of Their Skeletal Patterns from Individual to Evolutionary Viewpoints. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_11

Download citation

Publish with us

Policies and ethics