Skip to main content

Targeting MicroRNAs: Molecular Basis of Cancer Prevention

  • Chapter
  • First Online:
Molecular Targets and Strategies in Cancer Prevention

Abstract

Recent studies have shown that the alterations in the expression of miRNAs play critical roles in the processes of carcinogenesis and cancer progression. During the process of carcinogenesis, gene mutation and epigenetic aberration together with the exposure of environmental factors such as infection, ultraviolet light, irradiation, and environmental toxicants could change the expression level of miRNAs, resulting in the alterations in gene expression and cellular signal transductions. The aberrant expression of miRNAs initiates carcinogenesis and subsequently promotes the progression of cancers. Therefore, targeting the altered miRNAs may be a new approach for cancer prevention and treatment. Interestingly, dietary agents (natural agents) collectively known as nutraceuticals have been found to modulate and normalize the expression of miRNAs. Thus, the non-toxic dietary natural agents such as isoflavone genistein, curcumin, resveratrol, I3C, DIM, vitamins, etc. may have effects on cancer prevention and treatment. The in vitro and in vivo studies have provided the evidences showing that these agents could up-regulate tumor suppressive miRNAs and down-regulate oncogenic miRNAs, resulting in the suppression of cancer formation and progression. Hence, these agents could prevent the occurrence of cancer and may also inhibit tumor progression. Moreover, treatment with these non-toxic agents together with chemotherapeutics may be a novel approach for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nair S, Li W, Kong AN. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol Sin. 2007;28:459–72.

    Article  CAS  PubMed  Google Scholar 

  2. Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  4. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.

    CAS  PubMed  Google Scholar 

  5. Zhao L, Bode AM, Cao Y, et al. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis. 2012;33:2220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Winter J, Jung S, Keller S, et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.

    Article  CAS  PubMed  Google Scholar 

  7. Manikandan J, Aarthi JJ, Kumar SD, et al. Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation. 2008;2:330–4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee YS, Kim HK, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem. 2005;280:16635–41.

    Article  CAS  PubMed  Google Scholar 

  9. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–6.

    Article  CAS  PubMed  Google Scholar 

  10. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  11. Busbee PB, Nagarkatti M, Nagarkatti PS. Natural indoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression. Toxicol Appl Pharmacol. 2014;274:7–16.

    Article  CAS  PubMed  Google Scholar 

  12. Hegarty M, Coate J, Sherman-Broyles S, et al. Lessons from natural and artificial polyploids in higher plants. Cytogenet Genome Res. 2013;140:204–25.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Chen H, Hardy TM, et al. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One. 2013;8:e54369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Kong D, Wang Z, et al. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res. 2010;27:1027–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li Y, Kong D, Ahmad A, et al. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics. 2012;7:940–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun G, Yan J, Noltner K, et al. SNPs in human miRNA genes affect biogenesis and function. RNA. 2009;15:1640–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian T, Shu Y, Chen J, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev. 2009;18:1183–7.

    Article  CAS  PubMed  Google Scholar 

  18. Yu Z, Li Z, Jolicoeur N, et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 2007;35:4535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blitzblau RC, Weidhaas JB. MicroRNA binding-site polymorphisms as potential biomarkers of cancer risk. Mol Diagn Ther. 2010;14:335–42.

    Article  CAS  PubMed  Google Scholar 

  20. Pelletier C, Weidhaas JB. MicroRNA binding site polymorphisms as biomarkers of cancer risk. Expert Rev Mol Diagn. 2010;10:817–29.

    Article  CAS  PubMed  Google Scholar 

  21. Akkiz H, Bayram S, Bekar A, et al. A functional polymorphism in pre-microRNA-196a-2 contributes to the susceptibility of hepatocellular carcinoma in a Turkish population: a case-control study. J Viral Hepat. 2011;18:e399–407.

    Article  CAS  PubMed  Google Scholar 

  22. Chu YH, Tzeng SL, Lin CW, et al. Impacts of microRNA gene polymorphisms on the susceptibility of environmental factors leading to carcinogenesis in oral cancer. PLoS One. 2012;7:e39777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chin LJ, Ratner E, Leng S, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68:8535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang W, Winder T, Ning Y, et al. A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol. 2011;22:104–9.

    Article  CAS  PubMed  Google Scholar 

  25. Izzotti A, Larghero P, Longobardi M, et al. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung. Mutat Res. 2011;717:9–16.

    Article  CAS  PubMed  Google Scholar 

  26. Izzotti A, Calin GA, Steele VE, et al. Chemoprevention of cigarette smoke-induced alterations of MicroRNA expression in rat lungs. Cancer Prev Res (Phila). 2010;3:62–72.

    Article  CAS  Google Scholar 

  27. Izzotti A, Calin GA, Arrigo P, et al. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J. 2009;23:806–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006;66:7390–4.

    Article  CAS  PubMed  Google Scholar 

  29. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Izzotti A. Molecular medicine and the development of cancer chemopreventive agents. Ann N Y Acad Sci. 2012;1259:26–32.

    Article  CAS  PubMed  Google Scholar 

  31. Izzotti A, Larghero P, Cartiglia C, et al. Modulation of microRNA expression by budesonide, phenethyl isothiocyanate and cigarette smoke in mouse liver and lung. Carcinogenesis. 2010;31:894–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schembri F, Sridhar S, Perdomo C, et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci U S A. 2009;106:2319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Landi MT, Zhao Y, Rotunno M, et al. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res. 2010;16:430–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Russ R, Slack FJ. Cigarette-smoke-induced dysregulation of microRNA expression and its role in lung carcinogenesis. Pulm Med. 2012;2012:791234.

    Article  PubMed  CAS  Google Scholar 

  35. Lo JA, Fisher DE. The melanoma revolution: from UV carcinogenesis to a new era in therapeutics. Science. 2014;346:945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Syed DN, Khan MI, Shabbir M, et al. MicroRNAs in skin response to UV radiation. Curr Drug Targets. 2013;14:1128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li W, Zhou BR, Hua LJ, et al. Differential miRNA profile on photoaged primary human fibroblasts irradiated with ultraviolet A. Tumour Biol. 2013;34:3491–500.

    Article  CAS  PubMed  Google Scholar 

  38. Kraemer A, Chen IP, Henning S, et al. UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes. PLoS One. 2013;8:e83392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Greenberg E, Rechavi G, Amariglio N, et al. Mutagen-specific mutation signature determines global microRNA binding. PLoS One. 2011;6:e27400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lal A, Pan Y, Navarro F, et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol. 2009;16:492–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brunner S, Herndler-Brandstetter D, Arnold CR, et al. Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. Aging Cell. 2012;11:579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang XC, Du LQ, Tian LL, et al. Expression and function of miRNA in postoperative radiotherapy sensitive and resistant patients of non-small cell lung cancer. Lung Cancer. 2011;72:92–9.

    Article  PubMed  Google Scholar 

  43. Zhang Y, Wei W, Cheng N, et al. Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology. 2012;56:1631–40.

    Article  CAS  PubMed  Google Scholar 

  44. Honegger A, Schilling D, Bastian S, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11:e1004712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Paiva I, Gil da Costa RM, Ribeiro J, et al. A role for MicroRNA-155 expression in microenvironment associated to HPV-induced carcinogenesis in K14-HPV16 transgenic mice. PLoS One. 2015;10:e0116868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Miller DL, Davis JW, Taylor KH, et al. Identification of a human papillomavirus-associated oncogenic miRNA panel in human oropharyngeal squamous cell carcinoma validated by bioinformatics analysis of the cancer genome atlas. Am J Pathol. 2015;185:679–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shishodia G, Verma G, Srivastava Y, et al. Deregulation of microRNAs Let-7a and miR-21 mediate aberrant STAT3 signaling during human papillomavirus-induced cervical carcinogenesis: role of E6 oncoprotein. BMC Cancer. 2014;14:996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wang X, Wang HK, McCoy JP, et al. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA. 2009;15:637–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu H, Lu J, Zuo L, et al. Epstein-Barr virus downregulates microRNA 203 through the oncoprotein latent membrane protein 1: a contribution to increased tumor incidence in epithelial cells. J Virol. 2012;86:3088–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu C, Zheng Y, Lian D, et al. Analysis of MicroRNA expression profile identifies novel biomarkers for non-small cell lung cancer. Tumori. 2015;101:104–10.

    Article  PubMed  Google Scholar 

  51. Huang P, Ye B, Yang Y, et al. MicroRNA-181 functions as a tumor suppressor in non-small cell lung cancer (NSCLC) by targeting Bcl-2. Tumour Biol. 2014;36:3381–7.

    Article  PubMed  CAS  Google Scholar 

  52. Geng Q, Fan T, Zhang B, et al. Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer. Respir Res. 2014;15:149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhu W, He J, Chen D, et al. Expression of miR-29c, miR-93, and miR-429 as potential biomarkers for detection of early stage non-small lung cancer. PLoS One. 2014;9:e87780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nadal E, Zhong J, Lin J, et al. A MicroRNA cluster at 14q32 drives aggressive lung adenocarcinoma. Clin Cancer Res. 2014;20:3107–17.

    Article  CAS  PubMed  Google Scholar 

  55. Drusco A, Nuovo GJ, Zanesi N, et al. MicroRNA profiles discriminate among colon cancer metastasis. PLoS One. 2014;9:e96670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hofsli E, Sjursen W, Prestvik WS, et al. Identification of serum microRNA profiles in colon cancer. Br J Cancer. 2013;108:1712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Christensen LL, Tobiasen H, Holm A, et al. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer. Int J Cancer. 2013;133:67–78.

    Article  PubMed  CAS  Google Scholar 

  58. He X, Dong Y, Wu CW, et al. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med. 2012;18:1491–8.

    CAS  PubMed Central  Google Scholar 

  59. Sun JY, Huang Y, Li JP, et al. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting beta-catenin. Biochem Biophys Res Commun. 2012;420:787–92.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, He X, Liu Y, et al. microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer. Oncol Rep. 2012;27:685–94.

    CAS  PubMed  Google Scholar 

  61. Song C, Chen H, Wang T, et al. Expression profile analysis of microRNAs in prostate cancer by next-generation sequencing. Prostate. 2015;75:500–16.

    Article  CAS  PubMed  Google Scholar 

  62. Hart M, Nolte E, Wach S, et al. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol Cancer Res. 2014;12:250–63.

    Article  CAS  PubMed  Google Scholar 

  63. Reis ST, Pontes-Junior J, Antunes AA, et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol. 2012;12:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rane JK, Scaravilli M, Ylipaa A, et al. MicroRNA expression profile of primary prostate cancer stem cells as a source of biomarkers and therapeutic targets. Eur Urol. 2015;67:7–10.

    Article  CAS  PubMed  Google Scholar 

  65. Kong D, Heath E, Chen W, et al. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res. 2012;4:14–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zearo S, Kim E, Zhu Y, et al. MicroRNA-484 is more highly expressed in serum of early breast cancer patients compared to healthy volunteers. BMC Cancer. 2014;14:200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Cui W, Zhang S, Shan C, et al. microRNA-133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway. FEBS J. 2013;280:3962–74.

    Article  CAS  PubMed  Google Scholar 

  68. Okuda H, Xing F, Pandey PR, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2013;73:1434–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang B, Wang H, Yang Z. MiR-122 inhibits cell proliferation and tumorigenesis of breast cancer by targeting IGF1R. PLoS One. 2012;7:e47053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun X, Luo S, He Y, et al. Screening of the miRNAs related to breast cancer and identification of its target genes. Eur J Gynaecol Oncol. 2014;35:696–700.

    PubMed  Google Scholar 

  71. Erturk E, Cecener G, Tezcan G, et al. BRCA mutations cause reduction in miR-200c expression in triple negative breast cancer. Gene. 2015;556:163–9.

    Article  CAS  PubMed  Google Scholar 

  72. Danza K, De SS, Pinto R, et al. MiR-578 and miR-573 as potential players in BRCA-related breast cancer angiogenesis. Oncotarget. 2015;6:471–83.

    PubMed  Google Scholar 

  73. Li P, Sheng C, Huang L, et al. MiR-183/-96/-182 cluster is up-regulated in most breast cancers and increases cell proliferation and migration. Breast Cancer Res. 2014;16:473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Su A, He S, Tian B, et al. MicroRNA-221 mediates the effects of PDGF-BB on migration, proliferation, and the epithelial-mesenchymal transition in pancreatic cancer cells. PLoS One. 2013;8:e71309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li CH, To KF, Tong JH, et al. Enhancer of zeste homolog 2 silences microRNA-218 in human pancreatic ductal adenocarcinoma cells by inducing formation of heterochromatin. Gastroenterology. 2013;144:1086–97.

    Article  CAS  PubMed  Google Scholar 

  76. Schultz NA, Werner J, Willenbrock H, et al. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma. Mod Pathol. 2012;25:1609–22.

    Article  CAS  PubMed  Google Scholar 

  77. Papaconstantinou IG, Manta A, Gazouli M, et al. Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas. 2013;42:67–71.

    Article  CAS  PubMed  Google Scholar 

  78. Shi S, Lu Y, Qin Y, et al. miR-1247 is correlated with prognosis of pancreatic cancer and inhibits cell proliferation by targeting neuropilins. Curr Mol Med. 2014;14:316–27.

    Article  CAS  PubMed  Google Scholar 

  79. Arora S, Swaminathan SK, Kirtane A, et al. Synthesis, characterization, and evaluation of poly (D, L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy. Int J Nanomedicine. 2014;9:2933–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wei L, Lian B, Zhang Y, et al. Application of microRNA and mRNA expression profiling on prognostic biomarker discovery for hepatocellular carcinoma. BMC Genomics. 2014;15 Suppl 1:S13.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Koufaris C, Wright J, Currie RA, et al. Hepatic microRNA profiles offer predictive and mechanistic insights after exposure to genotoxic and epigenetic hepatocarcinogens. Toxicol Sci. 2012;128:532–43.

    Article  CAS  PubMed  Google Scholar 

  82. Varnholt H, Drebber U, Schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223–32.

    Article  CAS  PubMed  Google Scholar 

  83. Wong QW, Ching AK, Chan AW, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res. 2010;16:867–75.

    Article  CAS  PubMed  Google Scholar 

  84. Zheng F, Liao YJ, Cai MY, et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut. 2012;61:278–89.

    Article  CAS  PubMed  Google Scholar 

  85. Shinozaki-Ushiku A, Kunita A, Isogai M, et al. Profiling of virus-encoded microRNAs in Epstein-Barr virus-associated gastric carcinoma and their roles in gastric carcinogenesis. J Virol. 2015;89:5581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun J, Song Y, Wang Z, et al. Clinical significance of promoter region hypermethylation of microRNA-148a in gastrointestinal cancers. Onco Targets Ther. 2014;7:853–63.

    PubMed  PubMed Central  Google Scholar 

  87. Li Z, Lei H, Luo M, et al. DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. 2015;18:43–54.

    Article  CAS  PubMed  Google Scholar 

  88. Amodio N, Di Martino MT, Foresta U, et al. MiR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis. 2012;3:e436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Amodio N, Rossi M, Raimondi L, et al. miR-29 s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget. 2015;6:12837–61.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yang Y, Li F, Saha MN, et al. miR-137 and miR-197 Induce Apoptosis and Suppress Tumorigenicity by Targeting MCL-1 in Multiple Myeloma. Clin Cancer Res. 2015;21:2399–411.

    Article  CAS  PubMed  Google Scholar 

  91. Zhao JJ, Lin J, Zhu D, et al. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/beta-catenin/BCL9 pathway. Cancer Res. 2014;74:1801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Peng J, Thakur A, Zhang S, et al. Expressions of miR-181a and miR-20a in RPMI8226 cell line and their potential as biomarkers for multiple myeloma. Tumour Biol. 2015;36:8545–52.

    Article  CAS  PubMed  Google Scholar 

  93. Du J, Liu S, He J, et al. MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget. 2015;6:14993–5007.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rossi M, Amodio N, Di Martino MT, et al. MicroRNA and multiple myeloma: from laboratory findings to translational therapeutic approaches. Curr Pharm Biotechnol. 2014;15:459–67.

    Article  CAS  PubMed  Google Scholar 

  95. Amodio N, Di Martino MT, Neri A, et al. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther. 2013;13 Suppl 1:S125–37.

    Article  CAS  PubMed  Google Scholar 

  96. Rossi M, Amodio N, Di Martino MT, et al. From target therapy to miRNA therapeutics of human multiple myeloma: theoretical and technological issues in the evolving scenario. Curr Drug Targets. 2013;14:1144–9.

    Article  CAS  PubMed  Google Scholar 

  97. Soga D, Yoshiba S, Shiogama S, et al. microRNA expression profiles in oral squamous cell carcinoma. Oncol Rep. 2013;30:579–83.

    CAS  PubMed  Google Scholar 

  98. Ko MA, Zehong G, Virtanen C, et al. MicroRNA expression profiling of esophageal cancer before and after induction chemoradiotherapy. Ann Thorac Surg. 2012;94:1094–102.

    Article  PubMed  Google Scholar 

  99. Weber F, Teresi RE, Broelsch CE, et al. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:3584–91.

    Article  CAS  PubMed  Google Scholar 

  100. Andrade TA, Evangelista AF, Campos AH, et al. A microRNA signature profile in EBV+ diffuse large B-cell lymphoma of the elderly. Oncotarget. 2014;5:11813–26.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sandoval J, Diaz-Lagares A, Salgado R, et al. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. J Invest Dermatol. 2014;135:1128–37.

    Article  PubMed  CAS  Google Scholar 

  102. Koens L, Qin Y, Leung WY, et al. MicroRNA profiling of primary cutaneous large B-cell lymphomas. PLoS One. 2013;8:e82471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Motsch N, Alles J, Imig J, et al. MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One. 2012;7:e42193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schotte D, De Menezes RX, Akbari MF, et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica. 2011;96:703–11.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Robertus JL, Kluiver J, Weggemans C, et al. MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma. Br J Haematol. 2010;149:896–9.

    Article  CAS  PubMed  Google Scholar 

  106. Gibcus JH, Tan LP, Harms G, et al. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia. 2009;11:167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zanette DL, Rivadavia F, Molfetta GA, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res. 2007;40:1435–40.

    Article  CAS  PubMed  Google Scholar 

  108. Neelakandan K, Babu P, Nair S. Emerging roles for modulation of microRNA signatures in cancer chemoprevention. Curr Cancer Drug Targets. 2012;12:716–40.

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Li Y, Liu X, et al. Genetic and epigenetic studies for determining molecular targets of natural product anticancer agents. Curr Cancer Drug Targets. 2013;13:506–18.

    Article  CAS  PubMed  Google Scholar 

  110. Messina MJ. Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr. 1999;70:439S–50S.

    CAS  PubMed  Google Scholar 

  111. Messina MJ, Persky V, Setchell KD, et al. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer. 1994;21:113–31.

    Article  CAS  PubMed  Google Scholar 

  112. Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3:503–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang Y, Chen H. Genistein, an epigenome modifier during cancer prevention. Epigenetics. 2011;6:888–91.

    Article  PubMed  Google Scholar 

  114. Rabiau N, Trraf HK, Adjakly M, et al. miRNAs differentially expressed in prostate cancer cell lines after soy treatment. In Vivo. 2011;25:917–21.

    CAS  PubMed  Google Scholar 

  115. Hirata H, Hinoda Y, Shahryari V, et al. Genistein downregulates onco-miR-1260b and upregulates sFRP1 and Smad4 via demethylation and histone modification in prostate cancer cells. Br J Cancer. 2014;110:1645–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen Y, Zaman MS, Deng G, et al. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila). 2011;4:76–86.

    Article  CAS  Google Scholar 

  117. Zaman MS, Chen Y, Deng G, et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer. 2010;103:256–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xia J, Cheng L, Mei C, et al. Genistein inhibits cell growth and invasion through regulation of miR-27a in pancreatic cancer cells. Curr Pharm Des. 2014;20:5348–53.

    Article  CAS  PubMed  Google Scholar 

  119. Sun Q, Cong R, Yan H, et al. Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep. 2009;22:563–7.

    Article  CAS  PubMed  Google Scholar 

  120. Li Y, Vandenboom TG, Wang Z, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70:1486–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li Y, Vandenboom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69:6704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Parker LP, Taylor DD, Kesterson J, et al. Modulation of microRNA associated with ovarian cancer cells by genistein. Eur J Gynaecol Oncol. 2009;30:616–21.

    CAS  PubMed  Google Scholar 

  123. Recio MC, Andujar I, Rios JL. Anti-inflammatory agents from plants: progress and potential. Curr Med Chem. 2012;19:2088–103.

    Article  CAS  PubMed  Google Scholar 

  124. Krishnaswamy K. Traditional Indian spices and their health significance. Asia Pac J Clin Nutr. 2008;17 Suppl 1:265–8.

    PubMed  Google Scholar 

  125. Prasad S, Gupta SC, Tyagi AK, et al. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv. 2014;32:1053–64.

    Article  CAS  PubMed  Google Scholar 

  126. Park W, Amin AR, Chen ZG, et al. New perspectives of curcumin in cancer prevention. Cancer Prev Res (Phila). 2013;6:387–400.

    Article  CAS  Google Scholar 

  127. Saini S, Arora S, Majid S, et al. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res (Phila). 2011;4:1698–709.

    Article  CAS  PubMed Central  Google Scholar 

  128. Teiten MH, Dicato M, Diederich M. Curcumin as a regulator of epigenetic events. Mol Nutr Food Res. 2013;57:1619–29.

    Article  CAS  PubMed  Google Scholar 

  129. Fu S, Kurzrock R. Development of curcumin as an epigenetic agent. Cancer. 2010;116:4670–6.

    Article  CAS  PubMed  Google Scholar 

  130. Zheng J, Wu C, Lin Z, et al. Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation—a novel mechanism suppressing liver fibrosis. FEBS J. 2014;281:88–103.

    Article  CAS  PubMed  Google Scholar 

  131. Kong LM, Liao CG, Zhang Y, et al. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res. 2014;74:3764–78.

    Article  CAS  PubMed  Google Scholar 

  132. Yang J, Cao Y, Sun J, et al. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol. 2010;27:1114–8.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang J, Du Y, Wu C, et al. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep. 2010;24:1217–23.

    CAS  PubMed  Google Scholar 

  134. Allgayer H. Pdcd4, a colon cancer prognostic that is regulated by a microRNA. Crit Rev Oncol Hematol. 2010;73:185–91.

    Article  PubMed  Google Scholar 

  135. Roy S, Levi E, Majumdar AP, et al. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol. 2012;5:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bao B, Ali S, Banerjee S, et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012;72:335–45.

    Article  CAS  PubMed  Google Scholar 

  137. Giovinazzo G, Ingrosso I, Paradiso A, et al. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food. Plant Foods Hum Nutr. 2012;67:191–9.

    Article  CAS  PubMed  Google Scholar 

  138. Shukla Y, Singh R. Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci. 2011;1215:1–8.

    Article  CAS  PubMed  Google Scholar 

  139. Jha RK, Ma Q, Sha H, et al. Emerging role of resveratrol in the treatment of severe acute pancreatitis. Front Biosci (Schol Ed). 2010;2:168–75.

    Google Scholar 

  140. Aluyen JK, Ton QN, Tran T, et al. Resveratrol: potential as anticancer agent. J Diet Suppl. 2012;9:45–56.

    Article  CAS  PubMed  Google Scholar 

  141. Qin W, Zhang K, Clarke K, et al. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr Cancer. 2014;66:270–7.

    Article  CAS  PubMed  Google Scholar 

  142. Yu YH, Chen HA, Chen PS, et al. MiR-520 h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene. 2013;32:431–43.

    Article  CAS  PubMed  Google Scholar 

  143. Dhar S, Hicks C, Levenson AS. Resveratrol and prostate cancer: promising role for microRNAs. Mol Nutr Food Res. 2011;55:1219–29.

    Article  CAS  PubMed  Google Scholar 

  144. Cao Z, Yoon JH, Nam SW, et al. PDCD4 expression inversely correlated with miR-21 levels in gastric cancers. J Cancer Res Clin Oncol. 2012;138:611–9.

    Article  CAS  PubMed  Google Scholar 

  145. Sheth S, Jajoo S, Kaur T, et al. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One. 2012;7:e51655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tili E, Michaille JJ, Alder H, et al. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochem Pharmacol. 2010;80:2057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Han Z, Yang Q, Liu B, et al. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis. 2012;33:131–9.

    Article  CAS  PubMed  Google Scholar 

  148. Bae S, Lee EM, Cha HJ, et al. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol Cells. 2011;32:243–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Minich DM, Bland JS. A review of the clinical efficacy and safety of cruciferous vegetable phytochemicals. Nutr Rev. 2007;65:259–67.

    Article  PubMed  Google Scholar 

  150. Higdon JV, Delage B, Williams DE, et al. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res. 2007;55:224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Acharya A, Das I, Singh S, et al. Chemopreventive properties of indole-3-carbinol, diindolylmethane and other constituents of cardamom against carcinogenesis. Recent Pat Food Nutr Agric. 2010;2:166–77.

    Article  CAS  PubMed  Google Scholar 

  152. Firestone GL, Sundar SN. Minireview: modulation of hormone receptor signaling by dietary anticancer indoles. Mol Endocrinol. 2009;23:1940–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Firestone GL, Bjeldanes LF. Indole-3-carbinol and 3-3′-diindolylmethane antiproliferative signaling pathways control cell-cycle gene transcription in human breast cancer cells by regulating promoter-Sp1 transcription factor interactions. J Nutr. 2003;133:2448S–55.

    PubMed  Google Scholar 

  154. Melkamu T, Zhang X, Tan J, et al. Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis. 2010;31:252–8.

    Article  CAS  PubMed  Google Scholar 

  155. Mao HL, Zhu ZQ, Chen CD. The androgen receptor in hormone-refractory prostate cancer. Asian J Androl. 2009;11:69–73.

    Article  CAS  PubMed  Google Scholar 

  156. Rossi A, D’Urso OF, Gatto G, et al. Non-coding RNAs change their expression profile after Retinoid induced differentiation of the promyelocytic cell line NB4. BMC Res Notes. 2010;3:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26:4148–57.

    Article  CAS  PubMed  Google Scholar 

  158. Kutay H, Bai S, Datta J, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem. 2006;99:671–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang LL, Zhang Z, Li Q, et al. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod. 2009;24:562–79.

    Article  CAS  PubMed  Google Scholar 

  160. Marsit CJ, Eddy K, Kelsey KT. MicroRNA responses to cellular stress. Cancer Res. 2006;66:10843–8.

    Article  CAS  PubMed  Google Scholar 

  161. Wang X, Gocek E, Liu CG, et al. MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle. 2009;8:736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Alvarez-Diaz S, Valle N, Ferrer-Mayorga G, et al. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum Mol Genet. 2012;21:2157–65.

    Article  CAS  PubMed  Google Scholar 

  163. Mohri T, Nakajima M, Takagi S, et al. MicroRNA regulates human vitamin D receptor. Int J Cancer. 2009;125:1328–33.

    Article  CAS  PubMed  Google Scholar 

  164. Gaedicke S, Zhang X, Schmelzer C, et al. Vitamin E dependent microRNA regulation in rat liver. FEBS Lett. 2008;582:3542–6.

    Article  CAS  PubMed  Google Scholar 

  165. Sarveswaran S, Liroff J, Zhou Z, et al. Selenite triggers rapid transcriptional activation of p53, and p53-mediated apoptosis in prostate cancer cells: Implication for the treatment of early-stage prostate cancer. Int J Oncol. 2010;36:1419–28.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work cited in this review article was funded by grants from the National Cancer Institute, NIH (R01CA108535, R01CA154321, and R01CA164318 awarded to FHS). We also thank Puschelberg and Guido foundations for their generous contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Sarkar, F.H. (2016). Targeting MicroRNAs: Molecular Basis of Cancer Prevention. In: Chatterjee, M. (eds) Molecular Targets and Strategies in Cancer Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-31254-5_4

Download citation

Publish with us

Policies and ethics