Skip to main content

Epigenetic Alterations in Stomach Cancer: Implications for Diet and Nutrition

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Cancer is a malignant disease that involves a combination of genetic and epigenetic events along with external risk factors. Regarding stomach cancer, the risk factors include infections by Helicobacter pylori and by Epstein-Barr virus besides lifestyle habits, such as tobacco smoking, alcohol consumption, and high salt and low fruit and vegetable intakes. The stomach is one of the most predisposed organs to suffer aberrant epigenetic marks. Described alterations in stomach cancer comprise DNA methylation, histone marks, microRNA, and even enzymes involved in the epigenetic mechanisms. The relationship between cancer and diet is long established, and some nutrients can have a direct impact in the epigenetic of a cell, promoting or preventing gastric carcinogenesis. Intake of methionine, folate, polyphenols, alcohol, antioxidants such as curcumin and cranberries, and salty food has been shown to have an influence on the stomach tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ARID1A :

AT-rich interactive domain-containing protein 1A

BMP8B :

Bone morphogenetic protein 8B

Cdc2:

Cell division cycle protein 2 homolog

CDH1 :

E-cadherin

CDKN2A :

Cyclin-dependent kinase inhibitor 2A

CDX2 :

Caudal type homeobox 2

CpG:

5′- Citosine-phosphate-guanine-3′

DIM:

3,3′-Diindolylmethane

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferase

EBV:

Epstein-Barr virus

FLNC :

Filamin-2

HAND1 :

Heart- and neural crest derivatives-expressed protein 1

HAT:

Histone acetyltransferases

HDAC:

Histone deacetylases

HDGC:

Hereditary diffuse gastric cancer

HMT:

Histone methyltransferase

IARC:

International Agency for Research on Cancer

K:

Lysine

MeCP2:

Methyl-CpG-binding protein 2

miRNA:

Micro-ribonucleic acid

MLH1 :

MutL homolog 1

mRNA:

Messenger ribonucleic acid

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NO:

Nitric oxide

oncomiR:

Oncogenic miRNA

p53:

Protein P53

PTEN :

Phosphatase and tensin homolog

R:

Arginine

ROS:

Reactive oxygen species

RUNX3 :

Runt-related transcription factor 3

SAH:

S-adenosyl-L-homocysteine

SAM:

S-Adenosyl-L-methionine

SIRT1:

Sirtuin 1

TFF2 :

Trefoil factor 2

TREX1 :

Three prime repair exonuclease 1

TSA:

Trichostatin A

tsmiR:

Tumor suppressor miRNA

References

  • Alkan A, Mizrak D, Utkan G (2015) Lower folate levels in gastric cancer: is it a cause or a result? World J Gastroenterol 21:4101–4102. doi:10.3748/wjg.v21.i13.4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angrisano T, Lembo F, Peluso S, Keller S, Chiariotti L, Pero R (2012) Helicobacter pylori regulates iNOS promoter by histone modifications in human gastric epithelial cells. Med Microbiol Immunol 201:249–257. doi:10.1007/s00430-011-0227-9

    Article  CAS  PubMed  Google Scholar 

  • Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23:143–150

    Article  CAS  PubMed  Google Scholar 

  • Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B et al (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209

    Article  PubMed Central  Google Scholar 

  • Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. English translation: The Origin of Malignant Tumors (1929) by Bovery, M. (Williams and Wilkins, Baltimore: 1929, 1914). Gustav Fischer Verlag, Jena

    Google Scholar 

  • Calcagno DQ, Gigek CO, Chen ES, Burbano RR, Smith Mde A (2012) DNA and histone methylation in gastric carcinogenesis. World J Gastroenterol 19:1182–1192

    Article  Google Scholar 

  • Cavuoto P, Fenech MF (2012) A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 38:726–736. doi:10.1016/j.ctrv.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  • Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F et al (2011) Preventable exposures associated with human cancers. J Natl Cancer Inst 103:1827–1839. doi:10.1093/jnci/djr483

    Article  PubMed Central  Google Scholar 

  • Corso G, Carvalho J, Marrelli D, Vindigni C, Carvalho B, Seruca R et al (2013) Somatic mutations and deletions of the E-cadherin gene predict poor survival of patients with gastric cancer. J Clin Oncol 31:868–875. doi:10.1200/JCO.2012.44.4612

    Article  CAS  PubMed  Google Scholar 

  • Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS et al (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21:449–456. doi:10.1038/nm.3850

    Article  CAS  PubMed  Google Scholar 

  • da Silva Oliveira KC, Thomaz Araujo TM, Albuquerque CI, Barata GA, Gigek CO, Leal MF et al (2016) Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol 22:7951–7962. doi:10.3748/wjg.v22.i35.7951

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis CD, Uthus EO (2004) DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood) 229:988–995

    Article  CAS  Google Scholar 

  • De R, Kundu P, Swarnakar S, Ramamurthy T, Chowdhury A, Nair GB et al (2009) Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob Agents Chemother 53:1592–1597. doi:10.1128/AAC.01242-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Prete A, Allavena P, Santoro G, Fumarulo R, Corsi MM, Mantovani A (2011) Molecular pathways in cancer-related inflammation. Biochem Med (Zagreb) 21:264–275

    Article  Google Scholar 

  • Deng W, Yang H, Wang J, Cai J, Bai Z, Song J et al (2016) Coffee consumption and the risk of incident gastric cancer – a meta-analysis of prospective cohort studies. Nutr Cancer 68:40–47. doi:10.1080/01635581.2016.1115093

    Article  CAS  Google Scholar 

  • Ding SZ, Fischer W, Kaparakis-Liaskos M, Liechti G, Merrell DS, Grant PA et al (2010) Helicobacter pylori-induced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis. PLoS One 5:e9875. doi:10.1371/journal.pone.0009875

    Article  PubMed  PubMed Central  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33. doi:10.1038/nrg1748

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11. Retrieved 11/20/2016, 2016, from http://globocan.iarc.fr. doi

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. doi:10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  • Friso S, Udali S, De Santis D, Choi SW (2016) One-carbon metabolism and epigenetics. Mol Asp Med. doi:10.1016/j.mam.2016.11.007

  • Gao S, Ding LH, Wang JW, Li CB, Wang ZY (2013) Diet folate, DNA methylation and polymorphisms in methylenetetrahydrofolate reductase in association with the susceptibility to gastric cancer. Asian Pac J Cancer Prev 14:299–302

    Article  PubMed  Google Scholar 

  • Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MA (2012) Epigenetic mechanisms in gastric cancer. Epigenomics 4:279–294. doi:10.2217/epi.12.22

    Article  CAS  PubMed  Google Scholar 

  • Gigek CO, Chen ES, Smith MA (2015) Methyl-Cpg-Binding Protein (MBD) family: epigenomic read-outs functions and roles in tumorigenesis and psychiatric diseases. J Cell Biochem. doi

    Google Scholar 

  • Gonzalez CA, Agudo A (2011) Carcinogenesis, prevention and early detection of gastric cancer: where we are and where we should go. Int J Cancer 130:745–753

    Article  PubMed  Google Scholar 

  • Graziosi L, Mencarelli A, Renga B, D’Amore C, Bruno A, Santorelli C et al (2012) Epigenetic modulation by methionine deficiency attenuates the potential for gastric cancer cell dissemination. J Gastrointest Surg 17:39–49; discussion p 49. doi:10.1007/s11605-012-1996-1

  • Halpern BC, Clark BR, Hardy DN, Halpern RM, Smith RA (1974) The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci U S A 71:1133–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  Google Scholar 

  • Holian O, Wahid S, Atten MJ, Attar BM (2002) Inhibition of gastric cancer cell proliferation by resveratrol: role of nitric oxide. Am J Physiol Gastrointest Liver Physiol 282:G809–G816. doi:10.1152/ajpgi.00193.2001

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Hu W, Bai E, Zheng H, Liu Z, Wu J et al (2016) Curcumin sensitizes human gastric cancer cells to 5-fluorouracil through inhibition of the NFkappaB survival-signaling pathway. Onco Targets Ther 9:7373–7384. doi:10.2147/OTT.S118272

    Article  PubMed Central  Google Scholar 

  • Kaurah P, Huntsman DG (2014) GeneReviews: hereditary diffuse gastric cancer. University of Washington, Seattle

    Google Scholar 

  • Khayat AS, Guimarães AC, Calcagno DQ, Seabra AD, Lima EM, Leal MF, et al (2009) Interrelationship between TP53 gene deletion, protein expression and chromosome 17 aneusomy in gastric adenocarcinoma

    Google Scholar 

  • Kresty LA, Clarke J, Ezell K, Exum A, Howell AB, Guettouche T (2011) MicroRNA alterations in Barrett’s esophagus, esophageal adenocarcinoma, and esophageal adenocarcinoma cell lines following cranberry extract treatment: insights for chemoprevention. J Carcinog 10:34. doi:10.4103/1477-3163.91110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49

    Article  CAS  PubMed  Google Scholar 

  • Lee TY, Chiang EP, Shih YT, Lane HY, Lin JT, Wu CY (2014) Lower serum folate is associated with development and invasiveness of gastric cancer. World J Gastroenterol 20:11313–11320. doi:10.3748/wjg.v20.i32.11313

    Article  PubMed Central  Google Scholar 

  • Lee YC, Chiang TH, Chou CK, Tu YK, Liao WC, Wu MS et al (2016) Association between helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology 150:1113–1124.e5. doi:10.1053/j.gastro.2016.01.028

    Article  PubMed  Google Scholar 

  • Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S et al (2013) Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology 145:554–565. doi:10.1053/j.gastro.2013.05.010

    Article  CAS  Google Scholar 

  • Liu M, Lin LQ, Song BB, Wang LF, Zhang CP, Zhao JL et al (2009) Cranberry phytochemical extract inhibits SGC-7901 cell growth and human tumor xenografts in Balb/c nu/nu mice. J Agric Food Chem 57:762–768. doi:10.1021/jf802780k

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Sun K, Song A, Zhang X, Zhang X, He X (2014) Curcumin inhibits proliferation of gastric cancer cells by impairing ATP-sensitive potassium channel opening. World J Surg Oncol 12:389. doi:10.1186/1477-7819-12-389

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma SH, Jung W, Weiderpass E, Jang J, Hwang Y, Ahn C et al (2015) Impact of alcohol drinking on gastric cancer development according to Helicobacter pylori infection status. Br J Cancer 113:1381–1388. doi:10.1038/bjc.2015.333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M et al (2006) High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12:989–995. doi:10.1158/1078-0432.CCR-05-2096

    Article  CAS  PubMed  Google Scholar 

  • McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5:155–171; discussion 72

    CAS  Google Scholar 

  • McLean MH, El-Omar EM (2014) Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol 11:664–674. doi:10.1038/nrgastro.2014.143

    Article  CAS  PubMed  Google Scholar 

  • Mello AA, Leal MF, Rey JA, Pinto GR, Lamarao LM, Montenegro RC et al (2015) Deregulated expression of SRC, LYN and CKB kinases by DNA methylation and its potential role in gastric cancer invasiveness and metastasis. PLoS One 10:e0140492. doi:10.1371/journal.pone.0140492

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreira-Nunes CA, Barros MB, do Nascimento Borges B, Montenegro RC, Lamarao LM, Ribeiro HF et al (2014) Genetic screening analysis of patients with hereditary diffuse gastric cancer from northern and northeastern Brazil. Hered Cancer Clin Pract 12:18. doi:10.1186/1897-4287-12-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Mu LN, Cao W, Zhang ZF, Yu SZ, Jiang QW, You NC et al (2007) Polymorphisms of 5,10-methylenetetralydrofolate reductase (MTHFR), fruit and vegetable intake, and the risk of stomach cancer. Biomarkers 12:61–75. doi:10.1080/13547500600945101

    Article  CAS  Google Scholar 

  • Nagini S (2012) Carcinoma of the stomach: a review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol 4:156–169. doi:10.4251/wjgo.v4.i7.156

    Article  PubMed  PubMed Central  Google Scholar 

  • Nanjo S, Asada K, Yamashita S, Nakajima T, Nakazawa K, Maekita T et al (2012) Identification of gastric cancer risk markers that are informative in individuals with past H. pylori infection. Gastric Cancer 15:382–388. doi:10.1007/s10120-011-0126-1

    Article  CAS  PubMed  Google Scholar 

  • Nardone G, Compare D (2008) Epigenetic alterations due to diet and Helicobacter pylori infection in gastric carcinogenesis. Expert Rev Gastroenterol Hepatol 2:243–248. doi:10.1586/17474124.2.2.243

    Article  CAS  PubMed  Google Scholar 

  • Pontes TB, Chen ES, Gigek CO, Calcagno DQ, Wisnieski F, Leal MF et al (2014) Reduced mRNA expression levels of MBD2 and MBD3 in gastric carcinogenesis. Tumour Biol 35:3447–3453. doi:10.1007/s13277-013-1455-y

    Article  CAS  PubMed  Google Scholar 

  • Rocco A, Nardone G (2007) Diet, H pylori infection and gastric cancer: evidence and controversies. World J Gastroenterol 13:2901–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanoski CE, Glass CK, Stunnenberg HG, Wilson L, Almouzni G (2015) Epigenomics: roadmap for regulation. Nature 518:314–316. doi:10.1038/518314a

    Article  CAS  Google Scholar 

  • Saif MW, Makrilia N, Zalonis A, Merikas M, Syrigos K (2010) Gastric cancer in the elderly: an overview. Eur J Surg Oncol 36:709–717. doi:10.1016/j.ejso.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  • Sanikini H, Dik VK, Siersema PD, Bhoo-Pathy N, Uiterwaal CS, Peeters PH et al (2015) Total, caffeinated and decaffeinated coffee and tea intake and gastric cancer risk: results from the EPIC cohort study. Int J Cancer 136:E720–E730. doi:10.1002/ijc.29223

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, De R, Mukhopadhyay AK (2016) Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases. World J Gastroenterol 22:2736–2748. doi:10.3748/wjg.v22.i9.2736

    Article  CAS  PubMed Central  Google Scholar 

  • Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281. doi:10.1158/0008-5472.CAN-05-3632

    Article  CAS  PubMed  Google Scholar 

  • Shimazu T, Asada K, Charvat H, Kusano C, Otake Y, Kakugawa Y et al (2015) Association of gastric cancer risk factors with DNA methylation levels in gastric mucosa of healthy Japanese: a cross-sectional study. Carcinogenesis 36:1291–1298. doi:10.1093/carcin/bgv125

    Article  CAS  PubMed  Google Scholar 

  • Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A (2012) Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention. Br J Pharmacol 167:279–297. doi:10.1111/j.1476-5381.2012.02002.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Zhang W, Guo Y, Li Z, Chen X, Wang Y et al (2016) Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer. Tumour Biol 37:13177–13184. doi:10.1007/s13277-016-5221-9

    Article  CAS  PubMed  Google Scholar 

  • Tahara T, Arisawa T (2015) DNA methylation as a molecular biomarker in gastric cancer. Epigenomics 7:475–486. doi:10.2217/epi.15.4

    Article  CAS  Google Scholar 

  • Tio M, Andrici J, Cox MR, Eslick GD (2014) Folate intake and the risk of upper gastrointestinal cancers: a systematic review and meta-analysis. J Gastroenterol Hepatol 29:250–258. doi:10.1111/jgh.12446

    Article  PubMed  Google Scholar 

  • Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA (2014) Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol 10:643–655

    Article  Google Scholar 

  • Weh KM, Clarke J, Kresty LA (2016) Cranberries and cancer: an update of preclinical studies evaluating the cancer inhibitory potential of cranberry and cranberry derived constituents. Antioxidants (Basel) 5:27. doi:10.3390/antiox5030027

    Article  Google Scholar 

  • Wisnieski F, Calcagno DQ, Leal MF, Chen ES, Gigek CO, Santos LC et al (2014) Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A. Tumour Biol 35:6373–6381. doi:10.1007/s13277-014-1841-0

    Article  CAS  PubMed  Google Scholar 

  • Wisnieski F, Calcagno DQ, Leal MF, Santos LC, Gigek CO, Chen ES et al (2015) CDKN1A histone acetylation and gene expression relationship in gastric adenocarcinomas. Clin Exp Med 17:121–129. doi:10.1007/s10238-015-0400-3

    Article  PubMed  Google Scholar 

  • Wisnieski F, Leal MF, Calcagno DQ, Santos LC, Gigek CO, Chen ES et al (2016) BMP8B is a tumor suppressor gene regulated by histone acetylation in gastric cancer. J Cell Biochem. doi:10.1002/jcb.25766

  • Wu WK, Yu J, Chan MT, To KF, Cheng AS (2016) Combinatorial epigenetic deregulation by Helicobacter pylori and Epstein-Barr virus infections in gastric tumourigenesis. J Pathol 239:245–249. doi:10.1002/path.4731

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Wang B, Zang W, Wang X, Liu Z, Li W et al (2013) Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLoS One 8:e70627. doi:10.1371/journal.pone.0070627

    Article  PubMed Central  Google Scholar 

  • Ye Y, Fang Y, Xu W, Wang Q, Zhou J, Lu R (2016) 3,3′-Diindolylmethane induces anti-human gastric cancer cells by the miR-30e-ATG5 modulating autophagy. Biochem Pharmacol 115:77–84. doi:10.1016/j.bcp.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  • Yuasa Y, Nagasaki H, Akiyama Y, Sakai H, Nakajima T, Ohkura Y et al (2005) Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients. Carcinogenesis 26:193–200. doi:10.1093/carcin/bgh304

    Article  CAS  PubMed  Google Scholar 

  • Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K et al (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer 124:2677–2682. doi:10.1002/ijc.24231

    Article  CAS  PubMed  Google Scholar 

  • Zaridze D, Borisova E, Maximovitch D, Chkhikvadze V (2000) Alcohol consumption, smoking and risk of gastric cancer: case-control study from Moscow, Russia. Cancer Causes Control 11:363–371

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ma J, Pan K, Go VL, Chen J, You WC (2005) Efficacy of cranberry juice on Helicobacter pylori infection: a double-blind, randomized placebo-controlled trial. Helicobacter 10:139–145. doi:10.1111/j.1523-5378.2005.00301.x

    Article  PubMed  Google Scholar 

  • Zhu H, Li X, Zhang X, Chen D, Li D, Ren J et al (2016) Polymorphisms in mismatch repair genes are associated with risk and microsatellite instability of gastric cancer, and interact with life exposures. Gene 579:52–57. doi:10.1016/j.gene.2015.12.050

    Article  CAS  PubMed  Google Scholar 

  • Zou P, Xia Y, Chen T, Zhang J, Wang Z, Chen W et al (2016) Selective killing of gastric cancer cells by a small molecule targeting ROS-mediated ER stress activation. Mol Carcinog 55:1073–1086. doi:10.1002/mc.22351

    Article  CAS  PubMed  Google Scholar 

  • Zulueta A, Caretti A, Signorelli P, Ghidoni R (2015) Resveratrol: a potential challenger against gastric cancer. World J Gastroenterol 21:10636–10643. doi:10.3748/wjg.v21.i37.10636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Oliveira Gigek Ph. D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Gigek, C.O., Chen, E.S., Smith, M.A.C. (2017). Epigenetic Alterations in Stomach Cancer: Implications for Diet and Nutrition. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics